Correct-by-Construction Runtime Enforcement in AI - A Survey

Bettina Könighofer, Roderick Bloem, Rüdiger Ehlers, Christian Pek
{"title":"Correct-by-Construction Runtime Enforcement in AI - A Survey","authors":"Bettina Könighofer, Roderick Bloem, Rüdiger Ehlers, Christian Pek","doi":"10.48550/arXiv.2208.14426","DOIUrl":null,"url":null,"abstract":"Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior with respect to a formal specification of systems at runtime. In this paper, we are interested in techniques for constructing runtime enforcers for the concrete application domain of enforcing safety in AI. We discuss how safety is traditionally handled in the field of AI and how more formal guarantees on the safety of a self-learning agent can be given by integrating a runtime enforcer. We survey a selection of work on such enforcers, where we distinguish between approaches for discrete and continuous action spaces. The purpose of this paper is to foster a better understanding of advantages and limitations of different enforcement techniques, focusing on the specific challenges that arise due to their application in AI. Finally, we present some open challenges and avenues for future work.","PeriodicalId":334753,"journal":{"name":"Principles of Systems Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Principles of Systems Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.14426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Runtime enforcement refers to the theories, techniques, and tools for enforcing correct behavior with respect to a formal specification of systems at runtime. In this paper, we are interested in techniques for constructing runtime enforcers for the concrete application domain of enforcing safety in AI. We discuss how safety is traditionally handled in the field of AI and how more formal guarantees on the safety of a self-learning agent can be given by integrating a runtime enforcer. We survey a selection of work on such enforcers, where we distinguish between approaches for discrete and continuous action spaces. The purpose of this paper is to foster a better understanding of advantages and limitations of different enforcement techniques, focusing on the specific challenges that arise due to their application in AI. Finally, we present some open challenges and avenues for future work.
人工智能中构造正确的运行时执行——一个调查
运行时实施是指在运行时根据系统的正式规范实施正确行为的理论、技术和工具。在本文中,我们感兴趣的是构建运行时强制执行的技术,用于在人工智能中强制执行安全的具体应用领域。我们讨论了在人工智能领域如何传统地处理安全问题,以及如何通过集成运行时强制器来提供对自学习代理的安全的更正式的保证。我们调查了这些执行者的工作选择,其中我们区分了离散和连续动作空间的方法。本文的目的是促进对不同执行技术的优势和局限性的更好理解,重点关注由于它们在人工智能中的应用而产生的具体挑战。最后,我们提出了一些开放的挑战和未来工作的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信