{"title":"In-Plane Compressive Strength Analysis of Novel Folded Honeycomb Material","authors":"Ma Ruijun, Jianguo Cai, Yutao Wang, Jian Feng","doi":"10.1115/detc2019-97821","DOIUrl":null,"url":null,"abstract":"\n Two novel folded honeycombs with miura pattern are proposed in this paper. Geometry parameters for design process are given and explained. The in-plane compressive strength of the two proposed novel folded honeycombs has been studied by means of finite element simulation using ABAQUS. Quasi-static loading in two in-plane direction is selected to obtain the deformation and plateau stress. The unique collapse modes and plateau state are obtained and discussed. Compared with the conventional honeycombs, the in-plane strength of the two folded honeycombs is improved significantly. The negative Poisson’s ratio effect and buckling-restrained mechanism are introduced to illustrate the improvement. It is summarized that plateau stress under in-plane loading is improved with the included angle of miura pattern decrease for the local buckling is restrained. The folded auxetic honeycomb has the best in-plane strength for its presented negative Poisson’s ratio in two loading cases.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Two novel folded honeycombs with miura pattern are proposed in this paper. Geometry parameters for design process are given and explained. The in-plane compressive strength of the two proposed novel folded honeycombs has been studied by means of finite element simulation using ABAQUS. Quasi-static loading in two in-plane direction is selected to obtain the deformation and plateau stress. The unique collapse modes and plateau state are obtained and discussed. Compared with the conventional honeycombs, the in-plane strength of the two folded honeycombs is improved significantly. The negative Poisson’s ratio effect and buckling-restrained mechanism are introduced to illustrate the improvement. It is summarized that plateau stress under in-plane loading is improved with the included angle of miura pattern decrease for the local buckling is restrained. The folded auxetic honeycomb has the best in-plane strength for its presented negative Poisson’s ratio in two loading cases.