Towards the Diversity of Sensitive Attributes in k-Anonymity

Min Wu, Xiaojun Ye
{"title":"Towards the Diversity of Sensitive Attributes in k-Anonymity","authors":"Min Wu, Xiaojun Ye","doi":"10.1109/WI-IATW.2006.135","DOIUrl":null,"url":null,"abstract":"Privacy preservation is an important and challenging problem in microdata release. As a de-identification model, k-anonymity has gained much attention recently. While focusing on identity disclosures, k-anonymity does not well resolve attribute disclosures. In this paper we focus on the sensitive attribute disclosures in k-anonymity and propose an ordinal distance based sensitivity aware diversity metric. We assume the more diversity the sensitive attribute assumes in an equivalence class in a k-anonymized table, the less inference channel there is in the equivalence class","PeriodicalId":358971,"journal":{"name":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IATW.2006.135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Privacy preservation is an important and challenging problem in microdata release. As a de-identification model, k-anonymity has gained much attention recently. While focusing on identity disclosures, k-anonymity does not well resolve attribute disclosures. In this paper we focus on the sensitive attribute disclosures in k-anonymity and propose an ordinal distance based sensitivity aware diversity metric. We assume the more diversity the sensitive attribute assumes in an equivalence class in a k-anonymized table, the less inference channel there is in the equivalence class
论k-匿名中敏感属性的多样性
隐私保护是微数据发布中的一个重要而富有挑战性的问题。k-匿名作为一种去身份化模型,近年来受到了广泛关注。虽然专注于身份披露,k-匿名不能很好地解决属性披露。本文针对k-匿名的敏感属性披露问题,提出了一种基于有序距离的敏感感知多样性度量。我们假设在k匿名表的等价类中敏感属性的多样性越大,等价类中的推理通道就越少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信