ESL power estimation using virtual platforms with black box processor models

Stefan Schürmans, Gereon Onnebrink, R. Leupers, G. Ascheid, Xiaotao Chen
{"title":"ESL power estimation using virtual platforms with black box processor models","authors":"Stefan Schürmans, Gereon Onnebrink, R. Leupers, G. Ascheid, Xiaotao Chen","doi":"10.1109/SAMOS.2015.7363698","DOIUrl":null,"url":null,"abstract":"Processor models for electronic system level (ESL) simulations are usually provided by their vendors as binary object code. Those binaries appear as black boxes, which do not allow to observe their internals. This prevents the application of most existing ESL power estimation methodologies. To remedy this situation, this work presents an estimation methodology for the case of black box models. The evaluation for the ARM Cortex-A9 processor shows that the proposed approach is able to achieve a high accuracy. In comparison to hardware power measurements obtained from the OMAP4460 chip on the PandaBoard, the ESL estimation error is below 5%.","PeriodicalId":346802,"journal":{"name":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2015.7363698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Processor models for electronic system level (ESL) simulations are usually provided by their vendors as binary object code. Those binaries appear as black boxes, which do not allow to observe their internals. This prevents the application of most existing ESL power estimation methodologies. To remedy this situation, this work presents an estimation methodology for the case of black box models. The evaluation for the ARM Cortex-A9 processor shows that the proposed approach is able to achieve a high accuracy. In comparison to hardware power measurements obtained from the OMAP4460 chip on the PandaBoard, the ESL estimation error is below 5%.
使用带有黑盒处理器模型的虚拟平台进行ESL功率估计
电子系统级(ESL)仿真的处理器模型通常由其供应商以二进制目标代码的形式提供。这些二进制文件显示为黑盒,不允许观察它们的内部。这阻止了大多数现有ESL功率估计方法的应用。为了纠正这种情况,本工作提出了一种黑盒模型的估计方法。对ARM Cortex-A9处理器的测试表明,该方法能够达到较高的精度。与从PandaBoard上的OMAP4460芯片获得的硬件功耗测量结果相比,ESL估计误差低于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信