{"title":"Adaptive cut generation for improved linear programming decoding of binary linear codes","authors":"Xiaojie Zhang, P. Siegel","doi":"10.1109/ISIT.2011.6033822","DOIUrl":null,"url":null,"abstract":"Linear programming (LP) decoding approximates optimal maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of linear inequalities derived from the constraints represented by the rows of a parity-check matrix of the code. Adaptive linear programming (ALP) decoding significantly reduces the complexity of LP decoding by iteratively and adaptively adding necessary constraints in a sequence of smaller LP problems. Adaptive introduction of constraints derived from certain additional redundant parity check (RPC) constraints can further improve ALP performance. In this paper, we propose a new and effective algorithm to identify RPCs that produce linear constraints, referred to as “cuts,” that can eliminate non-ML solutions generated by the ALP decoder, often significantly improving the decoder error-rate performance. The cut-finding algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. Simulation results for several low-density parity-check codes demonstrate that the modified ALP decoding algorithm significantly narrows the performance gap between LP decoding and ML decoding.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Linear programming (LP) decoding approximates optimal maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of linear inequalities derived from the constraints represented by the rows of a parity-check matrix of the code. Adaptive linear programming (ALP) decoding significantly reduces the complexity of LP decoding by iteratively and adaptively adding necessary constraints in a sequence of smaller LP problems. Adaptive introduction of constraints derived from certain additional redundant parity check (RPC) constraints can further improve ALP performance. In this paper, we propose a new and effective algorithm to identify RPCs that produce linear constraints, referred to as “cuts,” that can eliminate non-ML solutions generated by the ALP decoder, often significantly improving the decoder error-rate performance. The cut-finding algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. Simulation results for several low-density parity-check codes demonstrate that the modified ALP decoding algorithm significantly narrows the performance gap between LP decoding and ML decoding.