BCI-Algebras and Related Logics

M. Bunder
{"title":"BCI-Algebras and Related Logics","authors":"M. Bunder","doi":"10.26686/ajl.v19i2.7567","DOIUrl":null,"url":null,"abstract":"Kabzinski in [6] first introduced an extension of BCI-logic that is isomorphic to BCI-algebras. Kashima and Komori in [7] gave a Gentzen-style sequent calculus version of this logic as well as another sequent calculus which they proved to be equivalent. They used the second to prove decidability of the word problem for BCI-algebras. The decidability proof relies on cut elimination for the second system, this paper provides a fuller and simpler proof of this. Also supplied is a new decidability proof and proof finding algorithm for their second extension of BCI-logic and so for BCI-algebras.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v19i2.7567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Kabzinski in [6] first introduced an extension of BCI-logic that is isomorphic to BCI-algebras. Kashima and Komori in [7] gave a Gentzen-style sequent calculus version of this logic as well as another sequent calculus which they proved to be equivalent. They used the second to prove decidability of the word problem for BCI-algebras. The decidability proof relies on cut elimination for the second system, this paper provides a fuller and simpler proof of this. Also supplied is a new decidability proof and proof finding algorithm for their second extension of BCI-logic and so for BCI-algebras.
bci -代数与相关逻辑
Kabzinski在[6]中首次引入了bci逻辑的扩展,该扩展与bci代数同构。1988年,Kashima和Komori给出了这个逻辑的根岑式序列演算版本以及另一个证明是等价的序列演算。他们用第二种方法证明了bci代数的词问题的可决性。第二系统的可判性证明依赖于割消,本文对此提供了一个更全面、更简单的证明。给出了bci -逻辑的二次扩展以及bci -代数的可决性证明和寻证算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信