Audio-visual speaker detection using dynamic Bayesian networks

A. Garg, V. Pavlovic, James M. Rehg
{"title":"Audio-visual speaker detection using dynamic Bayesian networks","authors":"A. Garg, V. Pavlovic, James M. Rehg","doi":"10.1109/AFGR.2000.840663","DOIUrl":null,"url":null,"abstract":"The development of human-computer interfaces poses a challenging problem: actions and intentions of different users have to be inferred from sequences of noisy and ambiguous sensory data. Temporal fusion of multiple sensors can be efficiently formulated using dynamic Bayesian networks (DBN). The DBN framework allows the power of statistical inference and learning to be combined with contextual knowledge of the problem. We demonstrate the use of DBN in tackling the problem of audio/visual speaker detection. \"Off-the-shelf\" visual and audio sensors (face, skin, texture, mouth motion, and silence detectors) are optimally fused along with contextual information in a DBN architecture that infers instances when an individual is speaking. Results obtained in the setup of an actual human-machine interaction system (Genie Casino Kiosk) demonstrate superiority of our approach over that of static, context-free fusion architecture.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

The development of human-computer interfaces poses a challenging problem: actions and intentions of different users have to be inferred from sequences of noisy and ambiguous sensory data. Temporal fusion of multiple sensors can be efficiently formulated using dynamic Bayesian networks (DBN). The DBN framework allows the power of statistical inference and learning to be combined with contextual knowledge of the problem. We demonstrate the use of DBN in tackling the problem of audio/visual speaker detection. "Off-the-shelf" visual and audio sensors (face, skin, texture, mouth motion, and silence detectors) are optimally fused along with contextual information in a DBN architecture that infers instances when an individual is speaking. Results obtained in the setup of an actual human-machine interaction system (Genie Casino Kiosk) demonstrate superiority of our approach over that of static, context-free fusion architecture.
基于动态贝叶斯网络的视听说话人检测
人机界面的发展提出了一个具有挑战性的问题:不同用户的行为和意图必须从嘈杂和模糊的感官数据序列中推断出来。动态贝叶斯网络(DBN)可以有效地实现多传感器的时间融合。DBN框架允许将统计推断和学习的力量与问题的上下文知识相结合。我们演示了DBN在解决音频/视觉说话人检测问题中的应用。“现成的”视觉和音频传感器(面部、皮肤、纹理、嘴部运动和沉默探测器)在DBN架构中与上下文信息完美融合,从而推断出一个人何时在说话。在实际人机交互系统(Genie Casino Kiosk)的设置中获得的结果表明,我们的方法优于静态的、无上下文的融合架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信