Trajectory Prediction Method of Millimeter-Wave Radar Based on Markov Model for Roadside Installation Scenario

Baidong Ma, Haiqing Liu, H. Fang
{"title":"Trajectory Prediction Method of Millimeter-Wave Radar Based on Markov Model for Roadside Installation Scenario","authors":"Baidong Ma, Haiqing Liu, H. Fang","doi":"10.1109/TOCS56154.2022.10016148","DOIUrl":null,"url":null,"abstract":"In the application of roadside traffic detection, when the wide-area millimeter-wave radar detects the target, due to the limits of target occlusion, detection angle and detection range, the problem of missing target trajectory points will be inevitable. Aiming at solving this problem, a target trajectory prediction method based on Markov is proposed. This method predicts the four characteristic values of the target: radial distance, radial speed, horizontal distance and horizontal speed respectively. In order to ensure the accuracy of trajectory prediction, the trajectory pre-processing is carried out by means of threshold filtering and smooth filtering, and the Markov prediction model is established after the data preprocessing completed, then the trajectory prediction is finally achieved. In this paper, the Markov model is used as a sample to predict the target trajectory by predicting the four eigenvalues of the actual data. The results show that the Markov model is used to realize the target trajectory prediction of millimeter-wave radar detection with high accuracy, which can be applied to actual traffic detection.","PeriodicalId":227449,"journal":{"name":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS56154.2022.10016148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the application of roadside traffic detection, when the wide-area millimeter-wave radar detects the target, due to the limits of target occlusion, detection angle and detection range, the problem of missing target trajectory points will be inevitable. Aiming at solving this problem, a target trajectory prediction method based on Markov is proposed. This method predicts the four characteristic values of the target: radial distance, radial speed, horizontal distance and horizontal speed respectively. In order to ensure the accuracy of trajectory prediction, the trajectory pre-processing is carried out by means of threshold filtering and smooth filtering, and the Markov prediction model is established after the data preprocessing completed, then the trajectory prediction is finally achieved. In this paper, the Markov model is used as a sample to predict the target trajectory by predicting the four eigenvalues of the actual data. The results show that the Markov model is used to realize the target trajectory prediction of millimeter-wave radar detection with high accuracy, which can be applied to actual traffic detection.
基于马尔可夫模型的毫米波雷达道路安装场景轨迹预测方法
在路边交通检测的应用中,广域毫米波雷达在检测目标时,由于目标遮挡、检测角度和检测距离的限制,不可避免地会出现目标轨迹点缺失的问题。针对这一问题,提出了一种基于马尔可夫的目标轨迹预测方法。该方法分别预测目标的径向距离、径向速度、水平距离和水平速度四个特征值。为了保证轨迹预测的准确性,采用阈值滤波和平滑滤波的方法对轨迹进行预处理,并在数据预处理完成后建立马尔可夫预测模型,最终实现轨迹预测。本文以马尔可夫模型为样本,通过预测实际数据的四个特征值来预测目标轨迹。结果表明,利用马尔可夫模型实现了毫米波雷达探测目标轨迹的高精度预测,可应用于实际交通探测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信