A comparative Analysis of Two Multiobjective Metaheuristic Methods using Performance Metrics

H. Bouali, B. Benhala, M. Guerbaoui
{"title":"A comparative Analysis of Two Multiobjective Metaheuristic Methods using Performance Metrics","authors":"H. Bouali, B. Benhala, M. Guerbaoui","doi":"10.1109/IRASET57153.2023.10153049","DOIUrl":null,"url":null,"abstract":"This paper provides an overview of the current state of research on multi-objective problems and compares two multi-objective metaheuristic methods: Multi-Objective Artificial Bee Colony (MOABC) and Non-Dominant Sorting Genetic Algorithm II (NSGA-II). The study evaluates the performance of these methods using three multi-objective test functions and three metrics: Generational Distance (GD), Spacing (SP), and Computational Time (CT). The results show that MOABC is the most suitable algorithm for multi-objective problems in terms of convergence and robustness, as indicated by the evaluation metrics.","PeriodicalId":228989,"journal":{"name":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET57153.2023.10153049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides an overview of the current state of research on multi-objective problems and compares two multi-objective metaheuristic methods: Multi-Objective Artificial Bee Colony (MOABC) and Non-Dominant Sorting Genetic Algorithm II (NSGA-II). The study evaluates the performance of these methods using three multi-objective test functions and three metrics: Generational Distance (GD), Spacing (SP), and Computational Time (CT). The results show that MOABC is the most suitable algorithm for multi-objective problems in terms of convergence and robustness, as indicated by the evaluation metrics.
使用绩效指标的两种多目标元启发式方法的比较分析
本文综述了多目标问题的研究现状,并对多目标人工蜂群(MOABC)和非优势排序遗传算法(NSGA-II)两种多目标元启发式方法进行了比较。该研究使用三个多目标测试函数和三个指标来评估这些方法的性能:世代距离(GD)、间隔(SP)和计算时间(CT)。结果表明,从收敛性和鲁棒性两方面来看,MOABC算法是最适合多目标问题的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信