Malware Detection and Classification Using Latent Semantic Indexing

S. Parajuli, S. Shakya
{"title":"Malware Detection and Classification Using Latent Semantic Indexing","authors":"S. Parajuli, S. Shakya","doi":"10.3126/JACEM.V4I0.23205","DOIUrl":null,"url":null,"abstract":"The increasing popularity of smart phones has led to the dramatic growth in mobile malware especially in Android platform.  Many aspects of android permission has been studied for malware detection but sufficient attention has not been given to intent.  This  research  work  proposes  using  Latent  Semantic  Indexing  for  malware  detection  and  classification  with  permissions and intents based features. This method analyses the Manifest file of an android application by understanding the risk level of permission and intents and assigning weight score based on their sensitivity. In an experiment conducted using a dataset containing 400 malware samples and 400 normal/benign samples, the results show accuracy of 83.5% using Android Intent against 79.1 % using Android permission. Additionally, experiment on combination of both features results in accuracy of 89.7%. It can be concluded from this research work that dataset with intent based features is able to detect malwares more when compared to permissions based features.","PeriodicalId":306432,"journal":{"name":"Journal of Advanced College of Engineering and Management","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced College of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/JACEM.V4I0.23205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The increasing popularity of smart phones has led to the dramatic growth in mobile malware especially in Android platform.  Many aspects of android permission has been studied for malware detection but sufficient attention has not been given to intent.  This  research  work  proposes  using  Latent  Semantic  Indexing  for  malware  detection  and  classification  with  permissions and intents based features. This method analyses the Manifest file of an android application by understanding the risk level of permission and intents and assigning weight score based on their sensitivity. In an experiment conducted using a dataset containing 400 malware samples and 400 normal/benign samples, the results show accuracy of 83.5% using Android Intent against 79.1 % using Android permission. Additionally, experiment on combination of both features results in accuracy of 89.7%. It can be concluded from this research work that dataset with intent based features is able to detect malwares more when compared to permissions based features.
基于潜在语义索引的恶意软件检测与分类
智能手机的日益普及导致了手机恶意软件的急剧增长,尤其是在Android平台上。android权限的许多方面已经研究了恶意软件检测,但没有给予足够的重视意图。本研究提出使用基于权限和意图特征的潜在语义索引进行恶意软件检测和分类。该方法通过了解权限和意图的风险等级,并根据其敏感性进行权重评分,分析android应用程序的Manifest文件。在使用包含400个恶意软件样本和400个正常/良性样本的数据集进行的实验中,结果显示使用Android Intent的准确率为83.5%,而使用Android permission的准确率为79.1%。另外,结合两种特征进行实验,准确率达到89.7%。通过本研究可以得出结论,与基于权限的特征相比,具有基于意图特征的数据集能够更好地检测恶意软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信