Fault diagnosis system for GIS using an artificial neural network

H. Ogi, H. Tanaka, Y. Akimoto, Y. Izui
{"title":"Fault diagnosis system for GIS using an artificial neural network","authors":"H. Ogi, H. Tanaka, Y. Akimoto, Y. Izui","doi":"10.1109/ANN.1991.213507","DOIUrl":null,"url":null,"abstract":"The authors present an artificial neural network (ANN) approach to a diagnostic system for a gas insulated switchgear (GIS). Firstly they survey the status of operational experience of failures in GISs and its diagnostic techniques. Secondly, they present how to acquire signal samples from the GIS and how to process them so as to be provided for an input layer of ANN. Finally they propose a decision-tree like network referred to as module neural network (MNN), and compare it with the well-known three-layered network, the straight forward neural network (SFNN).<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The authors present an artificial neural network (ANN) approach to a diagnostic system for a gas insulated switchgear (GIS). Firstly they survey the status of operational experience of failures in GISs and its diagnostic techniques. Secondly, they present how to acquire signal samples from the GIS and how to process them so as to be provided for an input layer of ANN. Finally they propose a decision-tree like network referred to as module neural network (MNN), and compare it with the well-known three-layered network, the straight forward neural network (SFNN).<>
基于人工神经网络的GIS故障诊断系统
提出了一种基于人工神经网络(ANN)的气体绝缘开关设备诊断系统。首先综述了gis故障的运行经验和故障诊断技术的现状。其次,介绍了如何从GIS中获取信号样本并对其进行处理,以提供给人工神经网络的输入层。最后,他们提出了一种类似决策树的网络,称为模块神经网络(MNN),并将其与众所周知的三层网络,直接神经网络(SFNN)进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信