Mammographic Mass Detection with Statistical Region Merging

M. Bajger, Fei Ma, Simon Williams, M. Bottema
{"title":"Mammographic Mass Detection with Statistical Region Merging","authors":"M. Bajger, Fei Ma, Simon Williams, M. Bottema","doi":"10.1109/DICTA.2010.14","DOIUrl":null,"url":null,"abstract":"An automatic method for detection of mammographic masses is presented which utilizes statistical region merging for segmentation (SRM) and linear discriminant analysis (LDA) for classification. The performance of the scheme was evaluated on 36 images selected from the local database of mammograms and on 48 images taken from the Digital Database for Screening Mammography (DDSM). The Az value (area under the ROC curve) for classifying each region was 0.90 for the local dataset and 0.96 for the images from DDSM. Results indicate that SRM segmentation can form part of an robust and efficient basis for analysis of mammograms.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

An automatic method for detection of mammographic masses is presented which utilizes statistical region merging for segmentation (SRM) and linear discriminant analysis (LDA) for classification. The performance of the scheme was evaluated on 36 images selected from the local database of mammograms and on 48 images taken from the Digital Database for Screening Mammography (DDSM). The Az value (area under the ROC curve) for classifying each region was 0.90 for the local dataset and 0.96 for the images from DDSM. Results indicate that SRM segmentation can form part of an robust and efficient basis for analysis of mammograms.
统计区域合并的乳房x线肿块检测
提出了一种利用统计区域合并分割(SRM)和线性判别分析(LDA)进行分类的乳腺肿块自动检测方法。对从本地乳房x线摄影数据库中选择的36张图像和从乳腺x线摄影筛查数字数据库(DDSM)中选择的48张图像进行了性能评估。对每个区域进行分类的Az值(ROC曲线下面积)对于本地数据集为0.90,对于DDSM图像为0.96。结果表明,SRM分割可以构成乳房x线照片分析的稳健和有效基础的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信