Semantic Segmentation of Clouds in Satellite Imagery Using Deep Pre-trained U-Nets

Cindy Gonzales, W. Sakla
{"title":"Semantic Segmentation of Clouds in Satellite Imagery Using Deep Pre-trained U-Nets","authors":"Cindy Gonzales, W. Sakla","doi":"10.1109/AIPR47015.2019.9174594","DOIUrl":null,"url":null,"abstract":"Earth observation and remote sensing technologies are widely used in various application areas. Because the abundance of collected data requires automated analytics, many communities are utilizing deep convolutional neural networks for such tasks. Automating cloud detection in remote sensing and earth observation imagery is a useful prerequisite for providing quality imagery for further analysis. In this paper, we train a model that uses a deep convolutional U-Net architecture, utilizing transfer learning to perform semantic segmentation of clouds in satellite imagery. Our proposed model outperforms state-of-the-art networks on a benchmark dataset based on several relevant segmentation metrics, including Jaccard Index (+7.69%), precision (+6.21%), and specificity (+0.37%). Moreover, we demonstrate that transfer learning utilizing a 4-channel input into a U-Net architecture is possible and highly performant by using a deep ResNet-style architecture pre-trained on ImageNet for the initialization of weights in three channels (red, green, and blue bands) and random initialization of weights in the fourth channel (near infrared band) of the first convolutional layer of the network.","PeriodicalId":167075,"journal":{"name":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR47015.2019.9174594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Earth observation and remote sensing technologies are widely used in various application areas. Because the abundance of collected data requires automated analytics, many communities are utilizing deep convolutional neural networks for such tasks. Automating cloud detection in remote sensing and earth observation imagery is a useful prerequisite for providing quality imagery for further analysis. In this paper, we train a model that uses a deep convolutional U-Net architecture, utilizing transfer learning to perform semantic segmentation of clouds in satellite imagery. Our proposed model outperforms state-of-the-art networks on a benchmark dataset based on several relevant segmentation metrics, including Jaccard Index (+7.69%), precision (+6.21%), and specificity (+0.37%). Moreover, we demonstrate that transfer learning utilizing a 4-channel input into a U-Net architecture is possible and highly performant by using a deep ResNet-style architecture pre-trained on ImageNet for the initialization of weights in three channels (red, green, and blue bands) and random initialization of weights in the fourth channel (near infrared band) of the first convolutional layer of the network.
基于深度预训练U-Nets的卫星图像云语义分割
对地观测和遥感技术广泛应用于各个应用领域。由于大量收集的数据需要自动分析,许多社区正在利用深度卷积神经网络来完成这些任务。在遥感和地球观测图像中实现云检测自动化是为进一步分析提供高质量图像的有用先决条件。在本文中,我们训练了一个使用深度卷积U-Net架构的模型,利用迁移学习对卫星图像中的云进行语义分割。我们提出的模型在基于几个相关分割指标的基准数据集上优于最先进的网络,包括Jaccard指数(+7.69%)、精度(+6.21%)和特异性(+0.37%)。此外,我们证明了利用4通道输入到U-Net架构的迁移学习是可能的,并且通过使用在ImageNet上预训练的深度resnet风格的架构来初始化网络第一卷积层的三个通道(红、绿、蓝波段)的权重,以及在第四个通道(近红外波段)的随机初始化权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信