Clustered eye movement similarity matrices

Ayush Kumar, Neil Timmermans, Michael Burch, K. Mueller
{"title":"Clustered eye movement similarity matrices","authors":"Ayush Kumar, Neil Timmermans, Michael Burch, K. Mueller","doi":"10.1145/3317958.3319811","DOIUrl":null,"url":null,"abstract":"Eye movements recorded for many study participants are difficult to interpret, in particular when the task is to identify similar scanning strategies over space, time, and participants. In this paper we describe an approach in which we first compare scanpaths, not only based on Jaccard (JD) and bounding box (BB) similarities, but also on more complex approaches like longest common subsequence (LCS), Frechet distance (FD), dynamic time warping (DTW), and edit distance (ED). The results of these algorithms generate a weighted comparison matrix while each entry encodes the pairwise participant scanpath comparison strength. To better identify participant groups of similar eye movement behavior we reorder this matrix by hierarchical clustering, optimal-leaf ordering, dimensionality reduction, or a spectral approach. The matrix visualization is linked to the original stimulus overplotted with visual attention maps and gaze plots on which typical interactions like temporal, spatial, or participant-based filtering can be applied.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"168 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317958.3319811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Eye movements recorded for many study participants are difficult to interpret, in particular when the task is to identify similar scanning strategies over space, time, and participants. In this paper we describe an approach in which we first compare scanpaths, not only based on Jaccard (JD) and bounding box (BB) similarities, but also on more complex approaches like longest common subsequence (LCS), Frechet distance (FD), dynamic time warping (DTW), and edit distance (ED). The results of these algorithms generate a weighted comparison matrix while each entry encodes the pairwise participant scanpath comparison strength. To better identify participant groups of similar eye movement behavior we reorder this matrix by hierarchical clustering, optimal-leaf ordering, dimensionality reduction, or a spectral approach. The matrix visualization is linked to the original stimulus overplotted with visual attention maps and gaze plots on which typical interactions like temporal, spatial, or participant-based filtering can be applied.
聚类眼动相似矩阵
许多研究参与者的眼球运动记录很难解释,特别是当任务是确定空间、时间和参与者的相似扫描策略时。在本文中,我们描述了一种方法,我们首先比较扫描路径,不仅基于Jaccard (JD)和bounding box (BB)相似性,而且还基于更复杂的方法,如最长公共子序列(LCS), Frechet距离(FD),动态时间扭曲(DTW)和编辑距离(ED)。这些算法的结果产生一个加权比较矩阵,而每个条目编码成对参与者扫描路径比较强度。为了更好地识别具有相似眼动行为的参与者群体,我们通过分层聚类、最优叶排序、降维或光谱方法对该矩阵进行重新排序。矩阵可视化与原始刺激相关联,与视觉注意图和凝视图重叠,在这些图上可以应用典型的交互作用,如时间、空间或基于参与者的过滤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信