Subspace-based preceding vehicle detection

M. A. Mangai, N. A. Gounden
{"title":"Subspace-based preceding vehicle detection","authors":"M. A. Mangai, N. A. Gounden","doi":"10.1109/RAICS.2011.6069311","DOIUrl":null,"url":null,"abstract":"In this paper, a vision-based preceding vehicle detection scheme using the statistical information of the vehicles and non-vehicles obtained is presented. K clusters are created using the simple K -means clustering algorithm. The partitions are recomputed using the nested subspacing concept. Mahalanobis distance based measure is used for grouping the image patterns and recognizing the vehicles. The performance of the proposed vehicle detection scheme is compared with that of Multi-Clustered Modified Quadratic Discriminant Function (MC-MQDF) method of preceding vehicle detection. Experimental results prove that the proposed scheme is more suitable for a reliable driver assistance system.","PeriodicalId":394515,"journal":{"name":"2011 IEEE Recent Advances in Intelligent Computational Systems","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Recent Advances in Intelligent Computational Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAICS.2011.6069311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a vision-based preceding vehicle detection scheme using the statistical information of the vehicles and non-vehicles obtained is presented. K clusters are created using the simple K -means clustering algorithm. The partitions are recomputed using the nested subspacing concept. Mahalanobis distance based measure is used for grouping the image patterns and recognizing the vehicles. The performance of the proposed vehicle detection scheme is compared with that of Multi-Clustered Modified Quadratic Discriminant Function (MC-MQDF) method of preceding vehicle detection. Experimental results prove that the proposed scheme is more suitable for a reliable driver assistance system.
基于子空间的前车探测
本文提出了一种基于视觉的前车检测方案,该方案利用所获得的车辆和非车辆统计信息进行前车检测。使用简单的K均值聚类算法创建K个聚类。使用嵌套的子间距概念重新计算分区。采用基于马氏距离的度量方法对图像模式进行分组和车辆识别。将所提出的车辆检测方案与多聚类修正二次判别函数(MC-MQDF)的前车检测方法进行了性能比较。实验结果表明,该方案更适合于一个可靠的驾驶员辅助系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信