Visual speech synthesis by modelling coarticulation dynamics using a non-parametric switching state-space model

S. Deena, Shaobo Hou, Aphrodite Galata
{"title":"Visual speech synthesis by modelling coarticulation dynamics using a non-parametric switching state-space model","authors":"S. Deena, Shaobo Hou, Aphrodite Galata","doi":"10.1145/1891903.1891942","DOIUrl":null,"url":null,"abstract":"We present a novel approach to speech-driven facial animation using a non-parametric switching state space model based on Gaussian processes. The model is an extension of the shared Gaussian process dynamical model, augmented with switching states. Audio and visual data from a talking head corpus are jointly modelled using the proposed method. The switching states are found using variable length Markov models trained on labelled phonetic data. We also propose a synthesis technique that takes into account both previous and future phonetic context, thus accounting for coarticulatory effects in speech.","PeriodicalId":181145,"journal":{"name":"ICMI-MLMI '10","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICMI-MLMI '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1891903.1891942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a novel approach to speech-driven facial animation using a non-parametric switching state space model based on Gaussian processes. The model is an extension of the shared Gaussian process dynamical model, augmented with switching states. Audio and visual data from a talking head corpus are jointly modelled using the proposed method. The switching states are found using variable length Markov models trained on labelled phonetic data. We also propose a synthesis technique that takes into account both previous and future phonetic context, thus accounting for coarticulatory effects in speech.
利用非参数切换状态空间模型对协同发音动力学建模的视觉语音合成
我们提出了一种基于高斯过程的非参数切换状态空间模型的语音驱动面部动画的新方法。该模型是对共享高斯过程动力学模型的扩展,增加了切换状态。利用该方法对说话头语料库中的音频和视觉数据进行了联合建模。使用标记语音数据训练的变长马尔可夫模型来发现切换状态。我们还提出了一种综合技术,该技术考虑了以前和未来的语音上下文,从而考虑了语音中的协同发音效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信