Performance evaluation of GMM and KD-KNN algorithms implemented in speaker identification web-application based on Java EE

M. Varga, I. Lapin, J. Kacur
{"title":"Performance evaluation of GMM and KD-KNN algorithms implemented in speaker identification web-application based on Java EE","authors":"M. Varga, I. Lapin, J. Kacur","doi":"10.1109/ELMAR.2014.6923354","DOIUrl":null,"url":null,"abstract":"This paper presents a possible improvement of the performance of a speaker identification web-application by introducing GMM and KD-KNN algorithms. The purpose of the web-application is to allow authentication of the user directly from the web-browser using his voice. The captured speech is streamed to the server where the MFCCs are extracted. The classification phase implements four different algorithms: KNN, KD-KNN, non-adapted GMM and adapted GMM. In this paper, error rate and time execution of each of the implement classification method is presented and discussed. The experimental results are then evaluated and the algorithm with the best performance result is given.","PeriodicalId":424325,"journal":{"name":"Proceedings ELMAR-2014","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings ELMAR-2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR.2014.6923354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a possible improvement of the performance of a speaker identification web-application by introducing GMM and KD-KNN algorithms. The purpose of the web-application is to allow authentication of the user directly from the web-browser using his voice. The captured speech is streamed to the server where the MFCCs are extracted. The classification phase implements four different algorithms: KNN, KD-KNN, non-adapted GMM and adapted GMM. In this paper, error rate and time execution of each of the implement classification method is presented and discussed. The experimental results are then evaluated and the algorithm with the best performance result is given.
基于Java EE的说话人识别web应用中GMM和KD-KNN算法的性能评价
本文通过引入GMM和KD-KNN算法,提出了一种可能改善说话人识别web应用程序性能的方法。web应用程序的目的是允许使用用户的声音直接从web浏览器进行身份验证。捕获的语音被流式传输到服务器,在那里提取mfc。分类阶段实现了四种不同的算法:KNN、KD-KNN、非自适应GMM和自适应GMM。本文给出并讨论了各种实现分类方法的错误率和执行时间。然后对实验结果进行了评价,给出了性能最佳的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信