Shrinking Horizon Model Predictive Control with chance-constrained signal temporal logic specifications

S. Farahani, R. Majumdar, Vinayak S. Prabhu, S. Soudjani
{"title":"Shrinking Horizon Model Predictive Control with chance-constrained signal temporal logic specifications","authors":"S. Farahani, R. Majumdar, Vinayak S. Prabhu, S. Soudjani","doi":"10.23919/ACC.2017.7963204","DOIUrl":null,"url":null,"abstract":"We present Shrinking Horizon Model Predictive Control (SHMPC) for linear dynamical systems, under stochastic disturbances, with probabilistic constraints encoded as Signal Temporal Logic (STL) specifications. The control objective is to minimize a cost function under the restriction that the given STL specification be satisfied with some minimum probability. The presented approach utilizes the knowledge of the disturbance distribution to synthesize the controller in SHMPC. We show that this synthesis problem can be (conservatively) transformed into sequential optimizations involving linear constraints. We experimentally demonstrate the effectiveness of our proposed approach by evaluating its performance on room temperature control of a building.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We present Shrinking Horizon Model Predictive Control (SHMPC) for linear dynamical systems, under stochastic disturbances, with probabilistic constraints encoded as Signal Temporal Logic (STL) specifications. The control objective is to minimize a cost function under the restriction that the given STL specification be satisfied with some minimum probability. The presented approach utilizes the knowledge of the disturbance distribution to synthesize the controller in SHMPC. We show that this synthesis problem can be (conservatively) transformed into sequential optimizations involving linear constraints. We experimentally demonstrate the effectiveness of our proposed approach by evaluating its performance on room temperature control of a building.
具有机会约束信号时序逻辑规范的收缩地平线模型预测控制
针对随机扰动下的线性动力系统,提出了一种基于信号时序逻辑(STL)规范的概率约束的收缩地平线模型预测控制(SHMPC)。控制目标是在给定的STL规范以最小概率满足的限制下最小化成本函数。该方法利用扰动分布的知识来合成SHMPC中的控制器。我们表明,这个综合问题可以(保守地)转化为涉及线性约束的顺序优化。我们通过实验证明了我们提出的方法的有效性,并评估了其在建筑物室温控制方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信