BERT-Based GitHub Issue Report Classification

Mohammed Latif Siddiq, Joanna C. S. Santos
{"title":"BERT-Based GitHub Issue Report Classification","authors":"Mohammed Latif Siddiq, Joanna C. S. Santos","doi":"10.1145/3528588.3528660","DOIUrl":null,"url":null,"abstract":"Issue tracking is one of the integral parts of software development, especially for open source projects. GitHub, a commonly used software management tool, provides its own issue tracking system. Each issue can have various tags, which are manually assigned by the project’s developers. However, manually labeling software reports is a time-consuming and error-prone task. In this paper, we describe a BERT-based classification technique to automatically label issues as questions, bugs, or enhancements. We evaluate our approach using a dataset containing over 800,000 labeled issues from real open source projects available on GitHub. Our approach classified reported issues with an average F1-score of 0.8571. Our technique outperforms a previous machine learning technique based on FastText.","PeriodicalId":313397,"journal":{"name":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3528588.3528660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Issue tracking is one of the integral parts of software development, especially for open source projects. GitHub, a commonly used software management tool, provides its own issue tracking system. Each issue can have various tags, which are manually assigned by the project’s developers. However, manually labeling software reports is a time-consuming and error-prone task. In this paper, we describe a BERT-based classification technique to automatically label issues as questions, bugs, or enhancements. We evaluate our approach using a dataset containing over 800,000 labeled issues from real open source projects available on GitHub. Our approach classified reported issues with an average F1-score of 0.8571. Our technique outperforms a previous machine learning technique based on FastText.
基于bert的GitHub问题报告分类
问题跟踪是软件开发中不可缺少的部分之一,特别是对于开源项目。GitHub是一个常用的软件管理工具,它提供了自己的问题跟踪系统。每个问题都可以有各种各样的标签,这些标签是由项目开发人员手动分配的。然而,手动标记软件报告是一项耗时且容易出错的任务。在本文中,我们描述了一种基于bert的分类技术,可以自动将问题标记为问题、错误或增强。我们使用包含超过80万个标记问题的数据集来评估我们的方法,这些问题来自GitHub上可用的真实开源项目。我们的方法对报告的问题进行分类,平均f1得分为0.8571。我们的技术优于之前基于FastText的机器学习技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信