S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli
{"title":"Continuous Human Activity Recognition and Step-Time Variability Analysis with FMCW Radar","authors":"S. Gurbuz, Mohammad Mahbubur Rahman, Emre Kurtoğlu, D. Martelli","doi":"10.1109/BHI56158.2022.9926892","DOIUrl":null,"url":null,"abstract":"Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Human activity recognition (HAR) and gait analysis are important functions that support aging-in-place and remote health monitoring. Although there have been many works investigating HAR with radar based on single-activity snapshots in time, few works address recognition in continuous streams of radio frequency (RF) data, where in daily life many different activities are conducted. This work proposes a novel variable window averaging method to segment RF data streams containing a mixture of large-scale gross motor activities as well as fine-grain hand gestures, a physics-aware generative adversarial network (PhGAN) to recognize daily activities, and a new technique to estimate step-time variability from RF data. Our results show that extraction of motion detected intervals and GAN-synthesized samples during training boosts HAR accuracy, while the estimation variance of time-step variability from radar compares well with that obtained from a Vicon motion capture system.