Visual Episodic Memory-based Exploration

J. Vice, Natalie Ruiz-Sanchez, P. Douglas, G. Sukthankar
{"title":"Visual Episodic Memory-based Exploration","authors":"J. Vice, Natalie Ruiz-Sanchez, P. Douglas, G. Sukthankar","doi":"10.32473/flairs.36.133322","DOIUrl":null,"url":null,"abstract":"In humans, intrinsic motivation is an important mechanism for open-ended cognitive development; in robots, it has been shown to be valuable for exploration. An important aspect of human cognitive development is episodic memory which enables both the recollection of events from the past and the projection of subjective future. This paper explores the use of visual episodic memory as a source of intrinsic motivation for robotic exploration problems. Using a convolutional recurrent neural network autoencoder, the agent learns an efficient representation for spatiotemporal features such that accurate sequence prediction can only happen once spatiotemporal features have been learned. Structural similarity between ground truth and autoencoder generated images is used as an intrinsic motivation signal to guide exploration. Our proposed episodic memory model also implicitly accounts for the agent's actions, motivating the robot to seek new interactive experiences rather than just areas that are visually dissimilar. When guiding robotic exploration, our proposed method outperforms the Curiosity-driven Variational Autoencoder (CVAE) at finding dynamic anomalies.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"304 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In humans, intrinsic motivation is an important mechanism for open-ended cognitive development; in robots, it has been shown to be valuable for exploration. An important aspect of human cognitive development is episodic memory which enables both the recollection of events from the past and the projection of subjective future. This paper explores the use of visual episodic memory as a source of intrinsic motivation for robotic exploration problems. Using a convolutional recurrent neural network autoencoder, the agent learns an efficient representation for spatiotemporal features such that accurate sequence prediction can only happen once spatiotemporal features have been learned. Structural similarity between ground truth and autoencoder generated images is used as an intrinsic motivation signal to guide exploration. Our proposed episodic memory model also implicitly accounts for the agent's actions, motivating the robot to seek new interactive experiences rather than just areas that are visually dissimilar. When guiding robotic exploration, our proposed method outperforms the Curiosity-driven Variational Autoencoder (CVAE) at finding dynamic anomalies.
基于视觉情景记忆的探索
在人类中,内在动机是开放式认知发展的重要机制;在机器人中,它已被证明是有价值的探索。情景记忆是人类认知发展的一个重要方面,它既能回忆过去的事件,也能预测主观的未来。本文探讨了使用视觉情景记忆作为机器人探索问题的内在动机的来源。使用卷积递归神经网络自编码器,智能体学习时空特征的有效表示,这样只有在学习了时空特征后才能进行准确的序列预测。地面真值与自编码器生成的图像之间的结构相似性被用作指导探索的内在动机信号。我们提出的情景记忆模型也隐含地解释了代理的行为,激励机器人寻求新的互动体验,而不仅仅是视觉上不同的区域。在引导机器人探索时,我们提出的方法在发现动态异常方面优于好奇心驱动的变分自编码器(CVAE)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信