A New Hybrid Wireless Sensor Network Localization System

Ahmed A. Ahmed, Hongchi Shi, Yi Shang
{"title":"A New Hybrid Wireless Sensor Network Localization System","authors":"Ahmed A. Ahmed, Hongchi Shi, Yi Shang","doi":"10.1109/PERSER.2006.1652234","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks are used to monitor the environment and to report the occurrence of events. The geographical location of the sensed event is usually important to the application. Hence, dynamically determining the physical location of every sensor node in space is crucial. In this paper, we present a new hybrid localization system (ALS) developed based on three existing localization algorithms: ad-hoc positioning system (APS), multidimensional scaling (MDS), and semidefinite programming (SDP). We consider five network properties that affect localization performance and use machine learning to obtain parameter values of ALS. Simulation shows that the new method achieves more accurate position estimation than the individual algorithms across broad network conditions","PeriodicalId":377064,"journal":{"name":"2006 ACS/IEEE International Conference on Pervasive Services","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 ACS/IEEE International Conference on Pervasive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERSER.2006.1652234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Wireless sensor networks are used to monitor the environment and to report the occurrence of events. The geographical location of the sensed event is usually important to the application. Hence, dynamically determining the physical location of every sensor node in space is crucial. In this paper, we present a new hybrid localization system (ALS) developed based on three existing localization algorithms: ad-hoc positioning system (APS), multidimensional scaling (MDS), and semidefinite programming (SDP). We consider five network properties that affect localization performance and use machine learning to obtain parameter values of ALS. Simulation shows that the new method achieves more accurate position estimation than the individual algorithms across broad network conditions
一种新型混合无线传感器网络定位系统
无线传感器网络用于监测环境和报告事件的发生。感测事件的地理位置通常对应用程序很重要。因此,动态确定每个传感器节点在空间中的物理位置至关重要。本文提出了一种基于ad-hoc定位系统(APS)、多维尺度(MDS)和半定规划(SDP)三种现有定位算法的混合定位系统(ALS)。我们考虑了影响定位性能的五种网络属性,并利用机器学习获得了ALS的参数值。仿真结果表明,在广泛的网络条件下,该方法的位置估计精度高于现有的算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信