{"title":"Generating more Realistic Packet Loss Patterns for Wireless links using Neural Networks","authors":"Daniel Otten, T. Hänel, Tim Römer, N. Aschenbruck","doi":"10.32473/flairs.36.133099","DOIUrl":null,"url":null,"abstract":"Simulations of wireless network connections are essential forthe development of new technologies because they are farmore scalable than real-world experiments and reproducible.Modeling packet loss realistically provides a highly abstractyet powerful tool for the simulation of wirelesses links. Typi-cally, simple statistical models or replaying of recorded tracesare used for the simulation. For a proper parametrization ofsimple statistical models, recorded traces are required, too.Both approaches have drawbacks: replaying traces is limitedto the length of the traces, a repetition may lead to unwantedeffects in the simulation. The statistical models solve this, butthe resulting packet loss patterns significantly differ from realones. In this paper, we propose using a neural network in-stead. It takes the same kind of input, i.e., a real-world trace,but it can generate longer traces with more realistic loss pat-terns. We share pre-trained neural networks for multiple linksin office and industry scenarios with the community for usein future research.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Simulations of wireless network connections are essential forthe development of new technologies because they are farmore scalable than real-world experiments and reproducible.Modeling packet loss realistically provides a highly abstractyet powerful tool for the simulation of wirelesses links. Typi-cally, simple statistical models or replaying of recorded tracesare used for the simulation. For a proper parametrization ofsimple statistical models, recorded traces are required, too.Both approaches have drawbacks: replaying traces is limitedto the length of the traces, a repetition may lead to unwantedeffects in the simulation. The statistical models solve this, butthe resulting packet loss patterns significantly differ from realones. In this paper, we propose using a neural network in-stead. It takes the same kind of input, i.e., a real-world trace,but it can generate longer traces with more realistic loss pat-terns. We share pre-trained neural networks for multiple linksin office and industry scenarios with the community for usein future research.