Generating more Realistic Packet Loss Patterns for Wireless links using Neural Networks

Daniel Otten, T. Hänel, Tim Römer, N. Aschenbruck
{"title":"Generating more Realistic Packet Loss Patterns for Wireless links using Neural Networks","authors":"Daniel Otten, T. Hänel, Tim Römer, N. Aschenbruck","doi":"10.32473/flairs.36.133099","DOIUrl":null,"url":null,"abstract":"Simulations of wireless network connections are essential forthe development of new technologies because they are farmore scalable than real-world experiments and reproducible.Modeling packet loss realistically provides a highly abstractyet powerful tool for the simulation of wirelesses links. Typi-cally, simple statistical models or replaying of recorded tracesare used for the simulation. For a proper parametrization ofsimple statistical models, recorded traces are required, too.Both approaches have drawbacks: replaying traces is limitedto the length of the traces, a repetition may lead to unwantedeffects in the simulation. The statistical models solve this, butthe resulting packet loss patterns significantly differ from realones. In this paper, we propose using a neural network in-stead. It takes the same kind of input, i.e., a real-world trace,but it can generate longer traces with more realistic loss pat-terns. We share pre-trained neural networks for multiple linksin office and industry scenarios with the community for usein future research.","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"365 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulations of wireless network connections are essential forthe development of new technologies because they are farmore scalable than real-world experiments and reproducible.Modeling packet loss realistically provides a highly abstractyet powerful tool for the simulation of wirelesses links. Typi-cally, simple statistical models or replaying of recorded tracesare used for the simulation. For a proper parametrization ofsimple statistical models, recorded traces are required, too.Both approaches have drawbacks: replaying traces is limitedto the length of the traces, a repetition may lead to unwantedeffects in the simulation. The statistical models solve this, butthe resulting packet loss patterns significantly differ from realones. In this paper, we propose using a neural network in-stead. It takes the same kind of input, i.e., a real-world trace,but it can generate longer traces with more realistic loss pat-terns. We share pre-trained neural networks for multiple linksin office and industry scenarios with the community for usein future research.
利用神经网络生成更真实的无线链路丢包模式
无线网络连接的模拟对于新技术的开发至关重要,因为它们比现实世界的实验更具可扩展性和可重复性。对丢包进行真实的建模为无线链路的仿真提供了一个高度抽象但功能强大的工具。通常,模拟使用简单的统计模型或重放记录的跟踪。对于简单统计模型的适当参数化,也需要记录轨迹。这两种方法都有缺点:重放轨迹受限于轨迹的长度,重复可能会导致模拟中出现不必要的影响。统计模型解决了这个问题,但是得到的丢包模式与实际情况有很大不同。在本文中,我们建议使用神经网络代替。它采用相同类型的输入,即,现实世界的轨迹,但它可以产生更长的轨迹与更现实的损失模式。我们与社区共享预先训练的神经网络,用于办公室和工业场景中的多个链路,以供未来的研究使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信