{"title":"Optimization of ARQ Distribution for HARQ Strategies in Delay-Bounded Networks","authors":"Jaya Goel, J. Harshan","doi":"10.23919/WiOpt56218.2022.9930612","DOIUrl":null,"url":null,"abstract":"Inspired by several delay-bounded mission-critical applications, optimizing the end-to-end reliability of multi-hop networks is an important problem subject to end-to-end delay constraints on the packets. Towards that direction, Automatic Repeat Request (ARQ) based strategies have been recently proposed wherein the problem statement is to distribute a certain total number of ARQs (that capture end-to-end delay) across the nodes such that the end-to-end reliability is optimized. Although such strategies provide a fine control to trade end-to-end delay with end-to-end reliability, their performance degrades in slowly-varying channel conditions. Pointing at this drawback, in this work, we propose a Chase Combing Hybrid ARQ (CC-HARQ) based multi-hop network addressing a similar problem statement of how to distribute a certain total number of ARQs such that the end-to-end reliability is optimized. Towards solving the problem, first, we identify that the objective function of the optimization problem is intractable due to the presence of Marcum-Q functions in it. As a result, we propose an approximation on the objective function and then prove a set of necessary and sufficient conditions on the near-optimal ARQ distribution. Subsequently, we propose a low-complexity algorithm to solve the problem for any network size. We show that CC-HARQ based strategies are particularly appealing in slow-fading channels wherein the existing ARQ strategies fail.","PeriodicalId":228040,"journal":{"name":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WiOpt56218.2022.9930612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Inspired by several delay-bounded mission-critical applications, optimizing the end-to-end reliability of multi-hop networks is an important problem subject to end-to-end delay constraints on the packets. Towards that direction, Automatic Repeat Request (ARQ) based strategies have been recently proposed wherein the problem statement is to distribute a certain total number of ARQs (that capture end-to-end delay) across the nodes such that the end-to-end reliability is optimized. Although such strategies provide a fine control to trade end-to-end delay with end-to-end reliability, their performance degrades in slowly-varying channel conditions. Pointing at this drawback, in this work, we propose a Chase Combing Hybrid ARQ (CC-HARQ) based multi-hop network addressing a similar problem statement of how to distribute a certain total number of ARQs such that the end-to-end reliability is optimized. Towards solving the problem, first, we identify that the objective function of the optimization problem is intractable due to the presence of Marcum-Q functions in it. As a result, we propose an approximation on the objective function and then prove a set of necessary and sufficient conditions on the near-optimal ARQ distribution. Subsequently, we propose a low-complexity algorithm to solve the problem for any network size. We show that CC-HARQ based strategies are particularly appealing in slow-fading channels wherein the existing ARQ strategies fail.