A multi-criteria model for robust foreground extraction

A. H. Kamkar-Parsi, R. Laganière, M. Bouchard
{"title":"A multi-criteria model for robust foreground extraction","authors":"A. H. Kamkar-Parsi, R. Laganière, M. Bouchard","doi":"10.1145/1099396.1099410","DOIUrl":null,"url":null,"abstract":"Numerous methods are currently available for motion detection using background modeling and subtraction. However, there are still many challenges to take into account such as moving shadows, illumination changes, moving background, relocation of background objects, and initialization with moving objects. This paper provides a new background subtraction algorithm that aggregates the classification results of several foreground extraction techniques based on UV color deviations, probabilistic gradient information and vector deviations, in order to produce a single decision that is more robust to those challenges.","PeriodicalId":196499,"journal":{"name":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the third ACM international workshop on Video surveillance & sensor networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1099396.1099410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerous methods are currently available for motion detection using background modeling and subtraction. However, there are still many challenges to take into account such as moving shadows, illumination changes, moving background, relocation of background objects, and initialization with moving objects. This paper provides a new background subtraction algorithm that aggregates the classification results of several foreground extraction techniques based on UV color deviations, probabilistic gradient information and vector deviations, in order to produce a single decision that is more robust to those challenges.
鲁棒前景提取的多准则模型
目前有许多方法可用于使用背景建模和减法进行运动检测。然而,仍然有许多挑战需要考虑,如移动阴影、照明变化、移动背景、背景对象的重新定位以及移动对象的初始化。本文提出了一种新的背景减除算法,该算法将几种基于UV颜色偏差、概率梯度信息和向量偏差的前景提取技术的分类结果聚合在一起,从而产生一个对这些挑战更具鲁棒性的单一决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信