Transient Adjoint DAE Sensitivities: a Complete, Rigorous, and Numerically Accurate Formulation

Naomi Sagan, J. Roychowdhury
{"title":"Transient Adjoint DAE Sensitivities: a Complete, Rigorous, and Numerically Accurate Formulation","authors":"Naomi Sagan, J. Roychowdhury","doi":"10.1109/asp-dac52403.2022.9712537","DOIUrl":null,"url":null,"abstract":"Almost all practical systems rely heavily on physical parameters. As a result, parameter sensitivity, or the extent to which perturbations in parameter values affect the state of a system, is intrinsically connected to system design and optimization. We present TADsens, a method for computing the parameter sensitivities of an output of a differential algebraic equation (DAE) system. Specifically, we provide rigorous, insightful theory for adjoint sensitivity computation of DAEs, along with an efficient and numerically well-posed algorithm implemented in Berkeley MAPP. Our theory and implementation advances resolve longstanding issues that have impeded adoption of adjoint transient sensitivities in circuit simulators for over 5 decades. We present results and comparisons on two nonlinear analog circuits. TADsens is numerically well posed and accurate, and faster by a factor of 300 over direct sensitivity computation on a circuit with over 150 unknowns and 600 parameters.","PeriodicalId":239260,"journal":{"name":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asp-dac52403.2022.9712537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Almost all practical systems rely heavily on physical parameters. As a result, parameter sensitivity, or the extent to which perturbations in parameter values affect the state of a system, is intrinsically connected to system design and optimization. We present TADsens, a method for computing the parameter sensitivities of an output of a differential algebraic equation (DAE) system. Specifically, we provide rigorous, insightful theory for adjoint sensitivity computation of DAEs, along with an efficient and numerically well-posed algorithm implemented in Berkeley MAPP. Our theory and implementation advances resolve longstanding issues that have impeded adoption of adjoint transient sensitivities in circuit simulators for over 5 decades. We present results and comparisons on two nonlinear analog circuits. TADsens is numerically well posed and accurate, and faster by a factor of 300 over direct sensitivity computation on a circuit with over 150 unknowns and 600 parameters.
瞬态伴随DAE灵敏度:一个完整的,严格的,数值精确的公式
几乎所有的实际系统都严重依赖于物理参数。因此,参数敏感性,或者说参数值的扰动对系统状态的影响程度,与系统设计和优化有着内在的联系。我们提出了TADsens,一种计算微分代数方程(DAE)系统输出参数灵敏度的方法。具体来说,我们为DAEs的伴随灵敏度计算提供了严格的,有见地的理论,以及在Berkeley MAPP中实现的高效且数值上良好的算法。我们的理论和实现进展解决了50多年来阻碍电路模拟器采用伴随瞬态灵敏度的长期问题。我们给出了两个非线性模拟电路的结果和比较。TADsens在数值上定位良好且准确,并且在具有150多个未知数和600个参数的电路上比直接灵敏度计算快300倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信