Computing an LLL-reduced Basis of the Orthogonal Latice

Jingwei Chen, D. Stehlé, G. Villard
{"title":"Computing an LLL-reduced Basis of the Orthogonal Latice","authors":"Jingwei Chen, D. Stehlé, G. Villard","doi":"10.1145/3208976.3209013","DOIUrl":null,"url":null,"abstract":"As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

As a typical application, the Lenstra-Lenstra-Lovász lattice basis reduction algorithm (LLL) is used to compute a reduced basis of the orthogonal lattice for a given integer matrix, via reducing a special kind of lattice bases. With such bases in input, we propose a new technique for bounding from above the number of iterations required by the LLL algorithm. The main technical ingredient is a variant of the classical LLL potential, which could prove useful to understand the behavior of LLL for other families of input bases.
正交格的lll -约简基的计算
作为一个典型的应用,Lenstra-Lenstra-Lovász晶格基约简算法(LLL)通过约简一类特殊的晶格基来计算给定整数矩阵的正交晶格的约简基。有了这样的输入基,我们提出了一种新的技术,从LLL算法所需的迭代次数上方进行边界。主要的技术成分是经典LLL势的一种变体,这可能有助于理解LLL对其他输入基族的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信