An LSTM method for predicting CU splitting in H.264 to HEVC transcoding

Yanan Wei, Zulin Wang, Mai Xu, Shu-juan Qiao
{"title":"An LSTM method for predicting CU splitting in H.264 to HEVC transcoding","authors":"Yanan Wei, Zulin Wang, Mai Xu, Shu-juan Qiao","doi":"10.1109/VCIP.2017.8305079","DOIUrl":null,"url":null,"abstract":"For H.264 to high efficiency video coding (HEVC) transcoding, this paper proposes a hierarchical Long Short-Term Memory (LSTM) method to predict coding unit (CU) splitting. Specifically, we first analyze the correlation between CU splitting patterns and H.264 features. Upon our analysis, we further propose a hierarchical LSTM architecture for predicting CU splitting of HEVC, with regard to the explored H.264 features. The features of H.264, including residual, macroblock (MB) partition and bit allocation, are employed as the input to our LSTM method. Experimental results demonstrate that the proposed method outperforms the state-of-the-art H.264 to HEVC transcoding methods, in terms of both complexity reduction and PSNR performance.","PeriodicalId":423636,"journal":{"name":"2017 IEEE Visual Communications and Image Processing (VCIP)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP.2017.8305079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

For H.264 to high efficiency video coding (HEVC) transcoding, this paper proposes a hierarchical Long Short-Term Memory (LSTM) method to predict coding unit (CU) splitting. Specifically, we first analyze the correlation between CU splitting patterns and H.264 features. Upon our analysis, we further propose a hierarchical LSTM architecture for predicting CU splitting of HEVC, with regard to the explored H.264 features. The features of H.264, including residual, macroblock (MB) partition and bit allocation, are employed as the input to our LSTM method. Experimental results demonstrate that the proposed method outperforms the state-of-the-art H.264 to HEVC transcoding methods, in terms of both complexity reduction and PSNR performance.
一种预测H.264转HEVC中CU分裂的LSTM方法
针对H.264到高效视频编码(HEVC)的转码问题,提出了一种分层长短期记忆(LSTM)预测编码单元(CU)分裂的方法。具体来说,我们首先分析了CU分割模式与H.264特性之间的相关性。基于我们的分析,我们进一步提出了一种分层LSTM架构,用于预测HEVC的CU分裂,考虑到探索的H.264特征。将H.264的残差、宏块(MB)划分和位分配等特征作为LSTM方法的输入。实验结果表明,该方法在复杂度降低和PSNR性能方面都优于目前最先进的H.264转HEVC转码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信