Wiener Index and Remoteness in Triangulations and Quadrangulations

É. Czabarka, P. Dankelmann, Trevor Olsen, L. Székely
{"title":"Wiener Index and Remoteness in Triangulations and Quadrangulations","authors":"É. Czabarka, P. Dankelmann, Trevor Olsen, L. Székely","doi":"10.46298/dmtcs.6473","DOIUrl":null,"url":null,"abstract":"Let $G$ be a a connected graph. The Wiener index of a connected graph is the\nsum of the distances between all unordered pairs of vertices. We provide\nasymptotic formulae for the maximum Wiener index of simple triangulations and\nquadrangulations with given connectivity, as the order increases, and make\nconjectures for the extremal triangulations and quadrangulations based on\ncomputational evidence. If $\\overline{\\sigma}(v)$ denotes the arithmetic mean\nof the distances from $v$ to all other vertices of $G$, then the remoteness of\n$G$ is defined as the largest value of $\\overline{\\sigma}(v)$ over all vertices\n$v$ of $G$. We give sharp upper bounds on the remoteness of simple\ntriangulations and quadrangulations of given order and connectivity.\n","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Let $G$ be a a connected graph. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices. We provide asymptotic formulae for the maximum Wiener index of simple triangulations and quadrangulations with given connectivity, as the order increases, and make conjectures for the extremal triangulations and quadrangulations based on computational evidence. If $\overline{\sigma}(v)$ denotes the arithmetic mean of the distances from $v$ to all other vertices of $G$, then the remoteness of $G$ is defined as the largest value of $\overline{\sigma}(v)$ over all vertices $v$ of $G$. We give sharp upper bounds on the remoteness of simple triangulations and quadrangulations of given order and connectivity.
Wiener指数与三角形和四边形的距离
设$G$为连通图。连通图的维纳指数是所有无序顶点对之间距离的和。我们给出了具有给定连通性的简单三角剖分和四边形随着阶数增加的最大Wiener指数的渐近公式,并基于计算证据对三角剖分和四边形的极值进行了推测。如果$\overline{\sigma}(v)$表示$v$到$G$的所有其他顶点的距离的算术平均值,则将$G$的距离定义为$\overline{\sigma}(v)$对$G$的所有顶点$v$的最大值。我们给出了给定阶数和连通性的简单三角剖分和四边形的距离的明显上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信