Low Frequency Oscillation Mode Identification Based On Blind Source Separation Via Ambient Signals

W. B. Lin, T. Ji, M. S. Li, Q. Wu
{"title":"Low Frequency Oscillation Mode Identification Based On Blind Source Separation Via Ambient Signals","authors":"W. B. Lin, T. Ji, M. S. Li, Q. Wu","doi":"10.1109/DEMPED.2019.8864902","DOIUrl":null,"url":null,"abstract":"In this paper, a new method is proposed using blind source separation (BSS) and random decrement technique (RDT) for low frequency sscillation (LFO) parameter estimation. The proposed method identifies LFO parameters using ambient data collected from phasor measurement unit (PMU) measurements. Simulation studies are carried out with numerical signals simulated from transfer function and WSCC three-machine nine-bus system. The results indicate that the proposed method can effectively identify LFO paremeters with high accuracy.","PeriodicalId":397001,"journal":{"name":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2019.8864902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new method is proposed using blind source separation (BSS) and random decrement technique (RDT) for low frequency sscillation (LFO) parameter estimation. The proposed method identifies LFO parameters using ambient data collected from phasor measurement unit (PMU) measurements. Simulation studies are carried out with numerical signals simulated from transfer function and WSCC three-machine nine-bus system. The results indicate that the proposed method can effectively identify LFO paremeters with high accuracy.
基于环境信号盲源分离的低频振荡模态识别
提出了一种利用盲源分离(BSS)和随机减量技术(RDT)进行低频振荡参数估计的新方法。该方法利用从相量测量单元(PMU)测量中收集的环境数据来识别LFO参数。用传递函数和WSCC三机九总线系统模拟的数值信号进行了仿真研究。结果表明,该方法可以有效地识别LFO参数,具有较高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信