Affine projections of symmetric polynomials

Amir Shpilka
{"title":"Affine projections of symmetric polynomials","authors":"Amir Shpilka","doi":"10.1109/CCC.2001.933883","DOIUrl":null,"url":null,"abstract":"We introduce a new model for computing polynomials-a depth 2 circuit with a symmetric gate at the top and plus gates at the bottom, i.e. the circuit computes a symmetric function in linear functions-S/sub m//sup d/(l/sub 1/, l/sub 2/, ..., l/sub m/) (S/sub m//sup d/ is the d'th elementary symmetric polynomial in m variables, and the l/sub i/'s are linear functions). We refer to this model as the symmetric model. This new model is related to standard models of arithmetic circuits, especially to depth 3 circuits. In particular we show that, in order to improve the results of Shpilka and Wigderson (1999), i.e. to prove super-quadratic lower bounds for depth 3 circuits, one must first prove a super-linear lower bound for the symmetric model. We prove two nontrivial linear lower bounds for our model. The first lower bound is for computing the determinant, and the second is for computing the sum of two monomials. The main technical contribution relates the maximal dimension of linear subspaces on which S/sub m//sup d/ vanishes, and lower bounds to the symmetric model. In particular we show that an answer of the following problem (which is very natural, and of independent interest) will imply lower bounds on symmetric circuits for many polynomials: \"what is the maximal dimension of a linear subspace of C/sup m/, on which S/sub m//sup d/ vanishes?\" We give two partial solutions to the problem above, each enables us to prove a different lower bound.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

We introduce a new model for computing polynomials-a depth 2 circuit with a symmetric gate at the top and plus gates at the bottom, i.e. the circuit computes a symmetric function in linear functions-S/sub m//sup d/(l/sub 1/, l/sub 2/, ..., l/sub m/) (S/sub m//sup d/ is the d'th elementary symmetric polynomial in m variables, and the l/sub i/'s are linear functions). We refer to this model as the symmetric model. This new model is related to standard models of arithmetic circuits, especially to depth 3 circuits. In particular we show that, in order to improve the results of Shpilka and Wigderson (1999), i.e. to prove super-quadratic lower bounds for depth 3 circuits, one must first prove a super-linear lower bound for the symmetric model. We prove two nontrivial linear lower bounds for our model. The first lower bound is for computing the determinant, and the second is for computing the sum of two monomials. The main technical contribution relates the maximal dimension of linear subspaces on which S/sub m//sup d/ vanishes, and lower bounds to the symmetric model. In particular we show that an answer of the following problem (which is very natural, and of independent interest) will imply lower bounds on symmetric circuits for many polynomials: "what is the maximal dimension of a linear subspace of C/sup m/, on which S/sub m//sup d/ vanishes?" We give two partial solutions to the problem above, each enables us to prove a different lower bound.
对称多项式的仿射投影
我们介绍了一种新的计算多项式的模型——一个深度为2的电路,上面有一个对称门,下面有多个门,即电路在线性函数中计算对称函数s /sub m//sup d/(l/sub 1/, l/sub 2/,…, l/下标m/) (S/下标m//sup d/是包含m个变量的第d个初等对称多项式,l/下标i/' S是线性函数)。我们把这个模型称为对称模型。该模型与算术电路的标准模型,特别是深度电路的标准模型有关。我们特别指出,为了改进Shpilka和Wigderson(1999)的结果,即为了证明深度3电路的超二次下界,必须首先证明对称模型的超线性下界。我们证明了该模型的两个非平凡线性下界。第一个下界是用来计算行列式的,第二个下界是用来计算两个单项式和的。主要的技术贡献涉及S/sub m//sup d/消失的线性子空间的最大维数,以及对称模型的下界。特别地,我们证明了以下问题的答案(这是非常自然的,并且是独立的兴趣)将暗示许多多项式的对称电路的下界:“C/sup m/的线性子空间的最大维数是多少,S/ sup m//sup d/在其上消失?”我们给出了上述问题的两个部分解,每个解都能证明一个不同的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信