Iterative Deconvolution Approach for Automatic Segmentation of Lung Ultrasound Vertical Artifacts

F. Mento, Mauro Gasperotti, L. Demi
{"title":"Iterative Deconvolution Approach for Automatic Segmentation of Lung Ultrasound Vertical Artifacts","authors":"F. Mento, Mauro Gasperotti, L. Demi","doi":"10.1109/IUS54386.2022.9957536","DOIUrl":null,"url":null,"abstract":"Lung ultrasound (LUS) is an important imaging tool to evaluate the state of the lung surface. However, the presence of air does not allow the anatomical investigation of lungs. Indeed, clinicians currently base their analysis on the visual interpretation of imaging artifacts, such as the vertical ones, which are visualized in the image as hyper-echoic vertical artifacts and correlate with several pathologies. In this work, we present a technique aiming at automatically segmenting vertical artifacts by exploiting signal deconvolution. Specifically, we exploited the dependency of vertical artifacts on frequency, and used an iterative deconvolution technique to segment the artifacts in lung-mimicking phantoms and clinical data.","PeriodicalId":272387,"journal":{"name":"2022 IEEE International Ultrasonics Symposium (IUS)","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IUS54386.2022.9957536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lung ultrasound (LUS) is an important imaging tool to evaluate the state of the lung surface. However, the presence of air does not allow the anatomical investigation of lungs. Indeed, clinicians currently base their analysis on the visual interpretation of imaging artifacts, such as the vertical ones, which are visualized in the image as hyper-echoic vertical artifacts and correlate with several pathologies. In this work, we present a technique aiming at automatically segmenting vertical artifacts by exploiting signal deconvolution. Specifically, we exploited the dependency of vertical artifacts on frequency, and used an iterative deconvolution technique to segment the artifacts in lung-mimicking phantoms and clinical data.
肺超声垂直伪影自动分割的迭代反卷积方法
肺超声(LUS)是评价肺表面状态的重要影像学工具。然而,空气的存在不允许对肺进行解剖研究。事实上,临床医生目前的分析是基于对成像伪影的视觉解释,比如垂直伪影,它在图像中显示为高回声垂直伪影,并与几种病理相关。在这项工作中,我们提出了一种旨在通过利用信号反卷积自动分割垂直伪影的技术。具体来说,我们利用垂直伪影对频率的依赖性,并使用迭代反卷积技术来分割肺模拟幻象和临床数据中的伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信