Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip

N. Rodríguez, M. Villemur, P. Julián
{"title":"Architecture Analysis for Symmetric Simplicial Deep Neural Networks on Chip","authors":"N. Rodríguez, M. Villemur, P. Julián","doi":"10.1109/CISS56502.2023.10089667","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks (CNN) are the dom-inating Machine Learning (ML) architecture used for complex tasks such as image classification despite their required usage of heavy computational resources, large storage space and power-demanding hardware. This motivates the exploration of alternative implementations using efficient neuromorphic hardware for resource constrained applications. Conventional Simplicial Piece-Wise Linear implementations allow the development of efficient hardware to run DNNs by avoiding multipliers, but demand large memory requirements. Symmetric Simplicial (SymSim) functions preserve the efficiency of the implementation while reducing the number of parameters per layer, and can be trained to replace convolutional layers and natively run non-linear filters such as MaxPool. This paper analyzes architectures to implement a Neural Network accelerator for SymSim operations optimizing the number of parallel cores to reduce the computational time. For this, we develop a model that takes into account the core processing times as well as the data transfer times.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Networks (CNN) are the dom-inating Machine Learning (ML) architecture used for complex tasks such as image classification despite their required usage of heavy computational resources, large storage space and power-demanding hardware. This motivates the exploration of alternative implementations using efficient neuromorphic hardware for resource constrained applications. Conventional Simplicial Piece-Wise Linear implementations allow the development of efficient hardware to run DNNs by avoiding multipliers, but demand large memory requirements. Symmetric Simplicial (SymSim) functions preserve the efficiency of the implementation while reducing the number of parameters per layer, and can be trained to replace convolutional layers and natively run non-linear filters such as MaxPool. This paper analyzes architectures to implement a Neural Network accelerator for SymSim operations optimizing the number of parallel cores to reduce the computational time. For this, we develop a model that takes into account the core processing times as well as the data transfer times.
芯片上对称简单深度神经网络的结构分析
卷积神经网络(CNN)是用于图像分类等复杂任务的主导机器学习(ML)架构,尽管它们需要使用大量计算资源、大存储空间和高功耗硬件。这激发了对资源受限应用程序使用高效神经形态硬件的替代实现的探索。传统的简单分段线性实现允许通过避免乘数来开发高效的硬件来运行dnn,但需要大量的内存需求。对称简化(SymSim)函数保持了实现的效率,同时减少了每层参数的数量,并且可以训练以取代卷积层和本机运行非线性过滤器,如MaxPool。本文分析了实现SymSim操作的神经网络加速器的体系结构,优化了并行核的数量以减少计算时间。为此,我们开发了一个考虑核心处理时间和数据传输时间的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信