Using Sparse Matrices to Prevent Information Leakage in Cloud Computing

K. Khan, Mahboob Shaheen, Yongge Wang
{"title":"Using Sparse Matrices to Prevent Information Leakage in Cloud Computing","authors":"K. Khan, Mahboob Shaheen, Yongge Wang","doi":"10.1109/FiCloud.2018.00070","DOIUrl":null,"url":null,"abstract":"Cloud computing represents the promise of outsourcing of scientific computing such as matrix multiplication. However, this can introduce new vulnerabilities such as information leakage. Cloud server intentionally or unintentionally may reveal sensitive input matrices of the client as well as multiplication results to unauthorised entities. In this paper, we propose two protocols that use sparse matrices to prevent information leakage in outsourcing matrix multiplications to cloud computing without encryption. The protocols are considered lightweight compared to other comparable approaches. We also provide a running example to demonstrate how the protocols ensure no information leakage of client data.","PeriodicalId":174838,"journal":{"name":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2018.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Cloud computing represents the promise of outsourcing of scientific computing such as matrix multiplication. However, this can introduce new vulnerabilities such as information leakage. Cloud server intentionally or unintentionally may reveal sensitive input matrices of the client as well as multiplication results to unauthorised entities. In this paper, we propose two protocols that use sparse matrices to prevent information leakage in outsourcing matrix multiplications to cloud computing without encryption. The protocols are considered lightweight compared to other comparable approaches. We also provide a running example to demonstrate how the protocols ensure no information leakage of client data.
利用稀疏矩阵防止云计算中的信息泄漏
云计算代表了外包科学计算(如矩阵乘法)的前景。但是,这可能会引入新的漏洞,例如信息泄漏。云服务器有意无意地将客户端的敏感输入矩阵以及乘法结果泄露给未授权实体。在本文中,我们提出了两种使用稀疏矩阵的协议,以防止在不加密的情况下将矩阵乘法外包给云计算时信息泄漏。与其他可比较的方法相比,这些协议被认为是轻量级的。我们还提供了一个运行的示例来演示协议如何确保客户端数据不泄露信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信