Sievenet: An Efficient Model Utilizing H.265 Codec Structure for Video Object Detection

O. Koyun, B. U. Töreyin
{"title":"Sievenet: An Efficient Model Utilizing H.265 Codec Structure for Video Object Detection","authors":"O. Koyun, B. U. Töreyin","doi":"10.1109/ICASSPW59220.2023.10193722","DOIUrl":null,"url":null,"abstract":"In the field of video content analysis, object detection is a crucial task. The High Efficient Video Coding (H.265, HEVC) standard’s coding structures are strongly correlated with the video content, creating an opportunity to utilize these structures for video object detection in a computationally efficient way. To address this, we present a video object detection method that partitions frames into macroblocks based on the H.265 structure. Blocks with spatially high-frequency content go through a dynamic-layer approach that subjects them to deeper analysis with more layers, while blocks with spatially low-frequency content undergo fewer layers to enable a lower computational load. Results on ImageNet-Vid Dataset indicate that our approach has the potential to save significant computational resources while maintaining accurate object detection performance.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of video content analysis, object detection is a crucial task. The High Efficient Video Coding (H.265, HEVC) standard’s coding structures are strongly correlated with the video content, creating an opportunity to utilize these structures for video object detection in a computationally efficient way. To address this, we present a video object detection method that partitions frames into macroblocks based on the H.265 structure. Blocks with spatially high-frequency content go through a dynamic-layer approach that subjects them to deeper analysis with more layers, while blocks with spatially low-frequency content undergo fewer layers to enable a lower computational load. Results on ImageNet-Vid Dataset indicate that our approach has the potential to save significant computational resources while maintaining accurate object detection performance.
Sievenet:一种利用H.265编解码结构的高效视频目标检测模型
在视频内容分析领域中,目标检测是一项至关重要的任务。高效视频编码(H.265, HEVC)标准的编码结构与视频内容密切相关,这为利用这些结构以高效的计算方式进行视频目标检测创造了机会。为了解决这个问题,我们提出了一种基于H.265结构将帧划分为宏块的视频对象检测方法。具有空间高频内容的块通过动态层方法,使用更多层对其进行更深入的分析,而具有空间低频内容的块通过更少的层来实现更低的计算负载。在ImageNet-Vid数据集上的结果表明,我们的方法在保持准确目标检测性能的同时,有可能节省大量的计算资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信