Acceleration of the modal series in the Neumann scattering problem for a hemispherical shell

D. Denison, R. Scharstein
{"title":"Acceleration of the modal series in the Neumann scattering problem for a hemispherical shell","authors":"D. Denison, R. Scharstein","doi":"10.1109/SSST.1993.522737","DOIUrl":null,"url":null,"abstract":"A mixed boundary value problem for the scalar acoustic field scattered by an axisymmetric plane wave incident upon a hard hemispherical shell is formulated. The resulting discontinuity in surface pressure is expressed in terms of a complete set of weighted Chebyshev polynomials that satisfy the correct asymptotic edge condition. In this way, the extremely slowly converging modal series of spherical wave functions is transformed to a convergent sum of physically motivated basis functions. Truncation to a finite number of unknown coefficients, together with Galerkin projection, yields a set of linear algebraic equations.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A mixed boundary value problem for the scalar acoustic field scattered by an axisymmetric plane wave incident upon a hard hemispherical shell is formulated. The resulting discontinuity in surface pressure is expressed in terms of a complete set of weighted Chebyshev polynomials that satisfy the correct asymptotic edge condition. In this way, the extremely slowly converging modal series of spherical wave functions is transformed to a convergent sum of physically motivated basis functions. Truncation to a finite number of unknown coefficients, together with Galerkin projection, yields a set of linear algebraic equations.
半球形壳体诺伊曼散射问题中模态级数的加速度
建立了轴对称平面波入射到坚硬半球形壳体后散射标量声场的混合边值问题。由此产生的表面压力不连续被表示为满足正确的渐近边条件的加权切比雪夫多项式的完备集。这样,极慢收敛的球形波函数模态级数就转化为物理驱动基函数的收敛和。截断有限个未知系数,结合伽辽金投影,得到一组线性代数方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信