Assessment of feature extraction techniques for hyperspectral image classification

Diwaker, M. Dutta
{"title":"Assessment of feature extraction techniques for hyperspectral image classification","authors":"Diwaker, M. Dutta","doi":"10.1109/ICACEA.2015.7164795","DOIUrl":null,"url":null,"abstract":"Using image classification methods to produce thematic maps from hyperspectral data is a challenging image processing task. Feature extraction is an important preprocessing operation to reduce the dimensionality of hyperspectral while preserving most of the information. This research work investigates some of the widely used feature extraction techniques and provides and accuracy analysis by performing experiments on a real dataset. A comparative performance analysis of some of the most important techniques including principle component analysis (PCA), Decision Boundary Feature Extraction (DBFE), and discriminative analysis feature extraction (DAFE) is provided in this work. The classification is carried out using statistical and neural network classifiers. The experimental results shown that DBFE has yielded best accuracy classification among the investigated techniques.","PeriodicalId":202893,"journal":{"name":"2015 International Conference on Advances in Computer Engineering and Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Advances in Computer Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACEA.2015.7164795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Using image classification methods to produce thematic maps from hyperspectral data is a challenging image processing task. Feature extraction is an important preprocessing operation to reduce the dimensionality of hyperspectral while preserving most of the information. This research work investigates some of the widely used feature extraction techniques and provides and accuracy analysis by performing experiments on a real dataset. A comparative performance analysis of some of the most important techniques including principle component analysis (PCA), Decision Boundary Feature Extraction (DBFE), and discriminative analysis feature extraction (DAFE) is provided in this work. The classification is carried out using statistical and neural network classifiers. The experimental results shown that DBFE has yielded best accuracy classification among the investigated techniques.
高光谱图像分类特征提取技术评价
利用图像分类方法从高光谱数据中生成专题地图是一项具有挑战性的图像处理任务。特征提取是一项重要的预处理操作,可以在保留大部分信息的同时降低高光谱的维数。本研究调查了一些广泛使用的特征提取技术,并通过在真实数据集上进行实验提供了准确性分析。在这项工作中,提供了一些最重要的技术的比较性能分析,包括主成分分析(PCA),决策边界特征提取(DBFE)和判别分析特征提取(DAFE)。使用统计分类器和神经网络分类器进行分类。实验结果表明,DBFE是目前所研究的分类方法中准确率最高的一种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信