{"title":"Identifying the Cause of and Fixing Ill-Conditioned Matrices in Nuclear Analysis Codes","authors":"Lance C. Larsen","doi":"10.1115/icone2020-16903","DOIUrl":null,"url":null,"abstract":"\n Many of the analytical codes used in the nuclear industry, such as TRACE, RELAP5, and PARCS, approximate the equations that model the physics via a linearized system of equations. One common difficulty when solving linearized systems is that an accurately formulated system of equations may be ill-conditioned. Ill-conditioned matrices can result in significant amplification of error leading to poor, or even invalid, results. Ill-conditioned matrices lead to some challenging issues for the analytical code developers:\n • An ill-conditioned matrix is often solvable, and there may be no obvious indication numerically that something has gone wrong even though numerical error is large. Thus, how can ill-conditioning be effectively detected for a matrix?\n • When ill-conditioning is detected, how can the source of the ill-conditioning be determined so that it can be analyzed and corrected?\n Ill-conditioning is fundamentally a geometric problem that can be understood with geometric concepts associated with matrices and vectors. Geometric concepts and tools, useful for understanding the cause of ill-conditioning of a matrix, are presented. A geometric understanding of ill-conditioning can point to the rows or columns of the matrix that most contribute to ill-conditioning so that the source of ill-conditioning can be analyzed and understood, and leads to techniques for building matrix preconditioners to improve the solvability of the matrix.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many of the analytical codes used in the nuclear industry, such as TRACE, RELAP5, and PARCS, approximate the equations that model the physics via a linearized system of equations. One common difficulty when solving linearized systems is that an accurately formulated system of equations may be ill-conditioned. Ill-conditioned matrices can result in significant amplification of error leading to poor, or even invalid, results. Ill-conditioned matrices lead to some challenging issues for the analytical code developers:
• An ill-conditioned matrix is often solvable, and there may be no obvious indication numerically that something has gone wrong even though numerical error is large. Thus, how can ill-conditioning be effectively detected for a matrix?
• When ill-conditioning is detected, how can the source of the ill-conditioning be determined so that it can be analyzed and corrected?
Ill-conditioning is fundamentally a geometric problem that can be understood with geometric concepts associated with matrices and vectors. Geometric concepts and tools, useful for understanding the cause of ill-conditioning of a matrix, are presented. A geometric understanding of ill-conditioning can point to the rows or columns of the matrix that most contribute to ill-conditioning so that the source of ill-conditioning can be analyzed and understood, and leads to techniques for building matrix preconditioners to improve the solvability of the matrix.