Exploring Causal Relationships Among Emotional and Topical Trajectories in Political Text Data

Andreas Baumann, Klaus Hofmann, B. Kern, Anna Marakasova, J. Neidhardt, Tanja Wissik
{"title":"Exploring Causal Relationships Among Emotional and Topical Trajectories in Political Text Data","authors":"Andreas Baumann, Klaus Hofmann, B. Kern, Anna Marakasova, J. Neidhardt, Tanja Wissik","doi":"10.4230/OASIcs.LDK.2021.38","DOIUrl":null,"url":null,"abstract":"We explore relationships between dynamics of emotion (arousal and valence) and topical stability in political discourse in two diachronic corpora of Austrian German. In doing so, we assess interactions among emotional and topical dynamics related to political parties as well as interactions between two different domains of discourse: debates in the parliament and journalistic media. Methodologically, we employ unsupervised techniques, time-series clustering and Granger-causal modeling to detect potential interactions. We find that emotional and topical dynamics in the media are only rarely a reflex of dynamics in parliamentary discourse.","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2021.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore relationships between dynamics of emotion (arousal and valence) and topical stability in political discourse in two diachronic corpora of Austrian German. In doing so, we assess interactions among emotional and topical dynamics related to political parties as well as interactions between two different domains of discourse: debates in the parliament and journalistic media. Methodologically, we employ unsupervised techniques, time-series clustering and Granger-causal modeling to detect potential interactions. We find that emotional and topical dynamics in the media are only rarely a reflex of dynamics in parliamentary discourse.
政治文本数据中情感轨迹与话题轨迹的因果关系探讨
在奥地利德语的两个历时语料库中,我们探讨了政治话语中情绪动态(唤醒和效价)与话题稳定性之间的关系。在此过程中,我们评估了与政党相关的情感和主题动态之间的相互作用,以及两个不同话语领域之间的相互作用:议会辩论和新闻媒体。在方法上,我们采用无监督技术,时间序列聚类和格兰杰因果模型来检测潜在的相互作用。我们发现,媒体中的情感和话题动态很少反映议会话语中的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信