Evaluating trends of airborne contaminants by using support vector regression techniques

A. Sotomayor-Olmedo, M. Aceves-Fernández, E. G. Hurtado, J. Ortega, J. E. Soto, Juan Manuel Ramos Arreguín, Ubaldo Geovanni Villasenor-Carillo
{"title":"Evaluating trends of airborne contaminants by using support vector regression techniques","authors":"A. Sotomayor-Olmedo, M. Aceves-Fernández, E. G. Hurtado, J. Ortega, J. E. Soto, Juan Manuel Ramos Arreguín, Ubaldo Geovanni Villasenor-Carillo","doi":"10.1109/CONIELECOMP.2011.5749350","DOIUrl":null,"url":null,"abstract":"Monitoring, modeling and forecasting of air quality parameters are important topics in environmental and health research due to their impact caused by exposing to air pollutants in urban environments. The aim of this article is to show that forecast of daily airborne pollution using support vector machines (SVM) is feasible in regression mode. Results are presented using data measurements of Particulate Matter of aerodynamical size on the order of 10 and 2.5 micrograms (PMx) in London-Bloomsbury at south England.","PeriodicalId":432662,"journal":{"name":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CONIELECOMP 2011, 21st International Conference on Electrical Communications and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2011.5749350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Monitoring, modeling and forecasting of air quality parameters are important topics in environmental and health research due to their impact caused by exposing to air pollutants in urban environments. The aim of this article is to show that forecast of daily airborne pollution using support vector machines (SVM) is feasible in regression mode. Results are presented using data measurements of Particulate Matter of aerodynamical size on the order of 10 and 2.5 micrograms (PMx) in London-Bloomsbury at south England.
利用支持向量回归技术评价空气污染物的变化趋势
空气质量参数的监测、建模和预测是环境和健康研究的重要课题,因为它们在城市环境中暴露于空气污染物中会产生影响。本文的目的是证明支持向量机(SVM)在回归模式下对日空气污染的预测是可行的。结果提出了使用数据测量颗粒物质的空气动力学尺寸在10和2.5微克(PMx)在伦敦-布卢姆斯伯里在英格兰南部。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信