An efficient fuzzy keyword matching technique for searching through encrypted cloud data

M. Ahsan, F. Chowdhury, M. Sabilah, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Bin Idris
{"title":"An efficient fuzzy keyword matching technique for searching through encrypted cloud data","authors":"M. Ahsan, F. Chowdhury, M. Sabilah, Ainuddin Wahid Abdul Wahab, Mohd Yamani Idna Bin Idris","doi":"10.1109/ICRIIS.2017.8002456","DOIUrl":null,"url":null,"abstract":"Cloud user intends to encrypt data before outsourcing sensitive data to the cloud which prevents data searching utility. Hence the necessity for searching through encrypted data appears. But in practice, it is very common for the user to misspell keywords while typing the words. Thus, fuzzy keyword search on encrypted data becomes an essential feature in searchable encryption. However, existing schemes suffer either from efficient handling of multi-letter errors or cannot distinguish anagrams. In this paper, we propose a scheme for fuzzy keyword search on encrypted data focusing on fuzzy word matching among dictionary words. Our proposed scheme construct a transformed keyword (monogram set) based on each letter and its position in the word, which enables to find out original word from its typo with maximum similarity matric. As a similarity metric, we have chosen a modified version of Jaccard similarity which ensures maximum similarity for the nearest word possibly the original one. Our experiment also suggests the applicability of our scheme.","PeriodicalId":384130,"journal":{"name":"2017 International Conference on Research and Innovation in Information Systems (ICRIIS)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Research and Innovation in Information Systems (ICRIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIIS.2017.8002456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Cloud user intends to encrypt data before outsourcing sensitive data to the cloud which prevents data searching utility. Hence the necessity for searching through encrypted data appears. But in practice, it is very common for the user to misspell keywords while typing the words. Thus, fuzzy keyword search on encrypted data becomes an essential feature in searchable encryption. However, existing schemes suffer either from efficient handling of multi-letter errors or cannot distinguish anagrams. In this paper, we propose a scheme for fuzzy keyword search on encrypted data focusing on fuzzy word matching among dictionary words. Our proposed scheme construct a transformed keyword (monogram set) based on each letter and its position in the word, which enables to find out original word from its typo with maximum similarity matric. As a similarity metric, we have chosen a modified version of Jaccard similarity which ensures maximum similarity for the nearest word possibly the original one. Our experiment also suggests the applicability of our scheme.
一种高效的模糊关键字匹配技术,用于加密云数据的搜索
云用户希望在将敏感数据外包给云之前对数据进行加密,从而阻止了数据搜索功能。因此,搜索加密数据的必要性出现了。但在实际操作中,用户在输入单词时拼错关键词是很常见的。因此,对加密数据进行模糊关键字搜索成为可搜索加密的一个重要特征。然而,现有的方案要么无法有效地处理多字母错误,要么无法区分字谜。本文提出了一种针对加密数据的模糊关键字搜索方案,重点关注字典词之间的模糊匹配。我们提出的方案基于每个字母及其在单词中的位置构造一个转换后的关键字(字母组合集),以最大的相似矩阵从错字中找到原单词。作为相似度度量,我们选择了一个修改版本的Jaccard相似度,以确保最近的单词可能是原始单词的最大相似度。我们的实验也表明了我们的方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信