F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, D. Rueckert
{"title":"Inference of functional connectivity from structural brain connectivity","authors":"F. Deligianni, E. Robinson, C. Beckmann, D. Sharp, A. Edwards, D. Rueckert","doi":"10.1109/ISBI.2010.5490188","DOIUrl":null,"url":null,"abstract":"Studies that examine the relationship of functional and structural connectivity are tremendously important in interpreting neurophysiological data. Although, the relationship between functional and structural connectivity has been explored with a number of statistical tools [1, 2], there is no explicit attempt to quantitatively measure how well functional data can be predicted from structural data. Here, we predict functional connectivity from structural connectivity, explicitly, by utilizing a predictive model based on PCA and CCA. The combination of these techniques allowed the reduction of dimensionality and modeling of inter-correlations, successfully. We provide both qualitative and quantitative results based on a leave-one-out validation.","PeriodicalId":250523,"journal":{"name":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2010.5490188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Studies that examine the relationship of functional and structural connectivity are tremendously important in interpreting neurophysiological data. Although, the relationship between functional and structural connectivity has been explored with a number of statistical tools [1, 2], there is no explicit attempt to quantitatively measure how well functional data can be predicted from structural data. Here, we predict functional connectivity from structural connectivity, explicitly, by utilizing a predictive model based on PCA and CCA. The combination of these techniques allowed the reduction of dimensionality and modeling of inter-correlations, successfully. We provide both qualitative and quantitative results based on a leave-one-out validation.