GPU-based 3D-FDTD computation for electromagnetic field dosimetry

T. Nagaoka, Soichi Watanabe
{"title":"GPU-based 3D-FDTD computation for electromagnetic field dosimetry","authors":"T. Nagaoka, Soichi Watanabe","doi":"10.1109/AFRCON.2011.6072180","DOIUrl":null,"url":null,"abstract":"Numerical dosimetry with the computational human model using the finite-difference time-domain (FDTD) method has recently been used for a safety assessment of electromagnetic field applications. However, the FDTD calculation runs very slowly and requires a large amount of computational memory. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). We implemented the three-dimensional (3D) FDTD method on GPUs using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C2070 as a GPGPU board and tested the performance of FDTD computation on GPUs. The results indicated that while the single GPU/CPU speed ratio varies depending on the calculation domain, 3D-FDTD computation using a GPU requires significantly less run time than that using a conventional CPU. We confirmed that the FDTD computation on a multi-GPU is much faster than that on a single GPU, and we also found that eight GPUs can compute faster than a vector supercomputer.","PeriodicalId":125684,"journal":{"name":"IEEE Africon '11","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Africon '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFRCON.2011.6072180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Numerical dosimetry with the computational human model using the finite-difference time-domain (FDTD) method has recently been used for a safety assessment of electromagnetic field applications. However, the FDTD calculation runs very slowly and requires a large amount of computational memory. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). We implemented the three-dimensional (3D) FDTD method on GPUs using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C2070 as a GPGPU board and tested the performance of FDTD computation on GPUs. The results indicated that while the single GPU/CPU speed ratio varies depending on the calculation domain, 3D-FDTD computation using a GPU requires significantly less run time than that using a conventional CPU. We confirmed that the FDTD computation on a multi-GPU is much faster than that on a single GPU, and we also found that eight GPUs can compute faster than a vector supercomputer.
基于gpu的电磁场剂量计三维时域有限差分计算
采用时域有限差分(FDTD)计算人体模型的数值剂量学最近被用于电磁场应用的安全性评估。然而,FDTD计算运行非常慢,并且需要大量的计算内存。因此,我们将重点放在图形处理单元(GPGPU)的通用编程上。我们使用计算统一设备架构(CUDA)在gpu上实现了三维时域有限差分方法。在本研究中,我们使用NVIDIA Tesla C2070作为GPGPU主板,测试了FDTD计算在gpu上的性能。结果表明,虽然单个GPU/CPU的速度比因计算域而异,但使用GPU的3D-FDTD计算所需的运行时间明显少于使用传统CPU的运行时间。我们证实了在多GPU上的FDTD计算比在单个GPU上快得多,并且我们还发现8个GPU的计算速度比一个矢量超级计算机快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信