{"title":"Integration of fuzzy classifiers with decision trees","authors":"I. Chiang, Jane Yung-jen Hsu","doi":"10.1109/AFSS.1996.583602","DOIUrl":null,"url":null,"abstract":"It is often difficult to make accurate predictions, given uncertain and noisy data for classification. Unfortunately, most real-world problems have to deal with such imperfect data. This paper presents a new model for fuzzy classification by integrating fuzzy classifiers with decision trees. In this approach, a fuzzy classification tree is constructed from the training data set. Instead of defining a specific class for a given instance, the proposed fuzzy classification scheme computes its degree of possibility for each class. The performance of the system is evaluated by empirically compared with a standard decision tree classifier C4.5 on several benchmark data sets from the UCI machine learning repository.","PeriodicalId":197019,"journal":{"name":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Computing in Intelligent Systems and Information Processing. Proceedings of the 1996 Asian Fuzzy Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFSS.1996.583602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
It is often difficult to make accurate predictions, given uncertain and noisy data for classification. Unfortunately, most real-world problems have to deal with such imperfect data. This paper presents a new model for fuzzy classification by integrating fuzzy classifiers with decision trees. In this approach, a fuzzy classification tree is constructed from the training data set. Instead of defining a specific class for a given instance, the proposed fuzzy classification scheme computes its degree of possibility for each class. The performance of the system is evaluated by empirically compared with a standard decision tree classifier C4.5 on several benchmark data sets from the UCI machine learning repository.