{"title":"A novel CNN+LSTM classification model based on fashion-MNIST","authors":"Yaran Ji","doi":"10.1117/12.2639667","DOIUrl":null,"url":null,"abstract":"Nowadays, Convolutional Neural Network (CNN) based image recognition is a popular research direction. This study uses the Fashion-Mnist dataset, which is more challenging than the Mnist dataset. aims to add Long short-term memory (LSTM) to the structure of CNN to create a hybrid model of CNN and LSTM, called CNN+LSTM model. This model is used to complete and optimize the image classification problem on Fashion-Mnist dataset. The final image classification accuracy of the obtained model is 91.36%, which still needs to be improved, but the accuracy results are better compared to the accuracy of other models.","PeriodicalId":336892,"journal":{"name":"Neural Networks, Information and Communication Engineering","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks, Information and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2639667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Nowadays, Convolutional Neural Network (CNN) based image recognition is a popular research direction. This study uses the Fashion-Mnist dataset, which is more challenging than the Mnist dataset. aims to add Long short-term memory (LSTM) to the structure of CNN to create a hybrid model of CNN and LSTM, called CNN+LSTM model. This model is used to complete and optimize the image classification problem on Fashion-Mnist dataset. The final image classification accuracy of the obtained model is 91.36%, which still needs to be improved, but the accuracy results are better compared to the accuracy of other models.