PCA and kernel PCA for radar high range resolution profiles recognition

Bo Chen, Hongwei Liu, Z. Bao
{"title":"PCA and kernel PCA for radar high range resolution profiles recognition","authors":"Bo Chen, Hongwei Liu, Z. Bao","doi":"10.1109/RADAR.2005.1435883","DOIUrl":null,"url":null,"abstract":"Radar high range resolution profile (HRRP) contains target structure information. It is shown to be a promising signature for radar automatic target recognition. As a method for data dimension reduction and feature extraction, principle component analysis (PCA) and kernel PCA have found wide applications in pattern recognition field. According to the characteristics of target pose sensitivity and shift sensitivity, a localized PCA and a modified KPCA are proposed for radar HRRP recognition. Also the methods for selecting the kernel basis vectors and handling the range-shift alignment are carefully addressed. Finally, support vector machine (SVM) classifier is used to evaluate the classification performance based on measured data. Experimental results show the proposed methods are effective and KPCA outperforms PCA.","PeriodicalId":444253,"journal":{"name":"IEEE International Radar Conference, 2005.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Radar Conference, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2005.1435883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Radar high range resolution profile (HRRP) contains target structure information. It is shown to be a promising signature for radar automatic target recognition. As a method for data dimension reduction and feature extraction, principle component analysis (PCA) and kernel PCA have found wide applications in pattern recognition field. According to the characteristics of target pose sensitivity and shift sensitivity, a localized PCA and a modified KPCA are proposed for radar HRRP recognition. Also the methods for selecting the kernel basis vectors and handling the range-shift alignment are carefully addressed. Finally, support vector machine (SVM) classifier is used to evaluate the classification performance based on measured data. Experimental results show the proposed methods are effective and KPCA outperforms PCA.
雷达高距离分辨率轮廓识别的主成分分析和核主成分分析
雷达高距离分辨力像(HRRP)包含目标结构信息。这是一种很有前途的雷达目标自动识别特征。主成分分析(PCA)和核主成分分析(kernel PCA)作为一种数据降维和特征提取方法,在模式识别领域有着广泛的应用。根据目标位姿灵敏度和位移灵敏度的特点,提出了一种局部PCA和一种改进的KPCA用于雷达HRRP识别。此外,还详细讨论了核基向量的选择和距离偏移对准的处理方法。最后,基于实测数据,利用支持向量机(SVM)分类器对分类性能进行评价。实验结果表明,所提方法是有效的,KPCA优于PCA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信