A sufficient condition for characteristic roots area of interval systems

Y. Okuyama, F. Takemori
{"title":"A sufficient condition for characteristic roots area of interval systems","authors":"Y. Okuyama, F. Takemori","doi":"10.1109/SICE.2001.977828","DOIUrl":null,"url":null,"abstract":"In actual systems, the physical parameters of plants are uncertain and are accompanied by nonlinearity. The transfer function and the characteristic polynomial should, therefore, be expressed by interval polynomials whether the input-output signals are continuous or discrete time. The paper examines the robust performance of that type of control system, based on the existing area of characteristic roots. In particular, a sufficient condition for the roots area which is enclosed by a specified circle on an s-plane is given by applying the classic Sturm theorem (division algorithm) to the four corners of a segment polynomial. The result that is obtained by finite calculations in regard to the coefficients of the segment polynomial, can be extended to general interval polynomials with multiple uncertain parameters.","PeriodicalId":415046,"journal":{"name":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2001. Proceedings of the 40th SICE Annual Conference. International Session Papers (IEEE Cat. No.01TH8603)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2001.977828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In actual systems, the physical parameters of plants are uncertain and are accompanied by nonlinearity. The transfer function and the characteristic polynomial should, therefore, be expressed by interval polynomials whether the input-output signals are continuous or discrete time. The paper examines the robust performance of that type of control system, based on the existing area of characteristic roots. In particular, a sufficient condition for the roots area which is enclosed by a specified circle on an s-plane is given by applying the classic Sturm theorem (division algorithm) to the four corners of a segment polynomial. The result that is obtained by finite calculations in regard to the coefficients of the segment polynomial, can be extended to general interval polynomials with multiple uncertain parameters.
区间系统特征根面积的一个充分条件
在实际系统中,对象的物理参数是不确定的,并且伴随着非线性。因此,无论输入输出信号是连续时间还是离散时间,传递函数和特征多项式都应该用区间多项式表示。本文基于特征根的存在范围,检验了该类控制系统的鲁棒性。特别地,将经典的Sturm定理(除法算法)应用于线段多项式的四角,给出了s平面上被指定圆包围的根面积的充分条件。由有限计算得到的关于段多项式系数的结果,可以推广到具有多个不确定参数的一般区间多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信