CachePerf

Jin Zhou, Steven J. Tang, Hanmei Yang, Tongping Liu
{"title":"CachePerf","authors":"Jin Zhou, Steven J. Tang, Hanmei Yang, Tongping Liu","doi":"10.1145/3489048.3526954","DOIUrl":null,"url":null,"abstract":"The cache plays a key role in determining the performance of applications, no matter for sequential or concurrent programs on homogeneous and heterogeneous architecture. Fixing cache misses requires to understand the origin and the type of cache misses. However, this remains to be an unresolved issue even after decades of research. This paper proposes a unified profiling tool--CachePerf--that could correctly identify different types of cache misses, differentiate allocator-induced issues from those of applications, and exclude minor issues without much performance impact. The core idea behind CachePerf is a hybrid sampling scheme: it employs the PMU-based coarse-grained sampling to select very few susceptible instructions (with frequent cache misses) and then employs the breakpoint-based fine-grained sampling to collect the memory access pattern of these instructions. Based on our evaluation, CachePerf only imposes 14% performance overhead and 19% memory overhead (for applications with large footprints), while identifying the types of cache misses correctly. CachePerf detected 9 previous-unknown bugs. Fixing the reported bugs achieves from 3% to 3788% performance speedup. CachePerf will be an indispensable complementary to existing profilers due to its effectiveness and low overhead.","PeriodicalId":264598,"journal":{"name":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract Proceedings of the 2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489048.3526954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The cache plays a key role in determining the performance of applications, no matter for sequential or concurrent programs on homogeneous and heterogeneous architecture. Fixing cache misses requires to understand the origin and the type of cache misses. However, this remains to be an unresolved issue even after decades of research. This paper proposes a unified profiling tool--CachePerf--that could correctly identify different types of cache misses, differentiate allocator-induced issues from those of applications, and exclude minor issues without much performance impact. The core idea behind CachePerf is a hybrid sampling scheme: it employs the PMU-based coarse-grained sampling to select very few susceptible instructions (with frequent cache misses) and then employs the breakpoint-based fine-grained sampling to collect the memory access pattern of these instructions. Based on our evaluation, CachePerf only imposes 14% performance overhead and 19% memory overhead (for applications with large footprints), while identifying the types of cache misses correctly. CachePerf detected 9 previous-unknown bugs. Fixing the reported bugs achieves from 3% to 3788% performance speedup. CachePerf will be an indispensable complementary to existing profilers due to its effectiveness and low overhead.
缓存性能
缓存在决定应用程序的性能方面起着关键作用,无论是同构还是异构架构上的顺序程序还是并发程序。修复缓存缺失需要了解缓存缺失的来源和类型。然而,即使经过几十年的研究,这仍然是一个未解决的问题。本文提出了一个统一的分析工具——CachePerf——它可以正确地识别不同类型的缓存缺失,区分分配器引起的问题和应用程序的问题,并在不太影响性能的情况下排除次要问题。CachePerf背后的核心思想是一种混合采样方案:它采用基于pmu的粗粒度采样来选择很少的易受影响的指令(经常缓存丢失),然后采用基于断点的细粒度采样来收集这些指令的内存访问模式。根据我们的评估,CachePerf在正确识别缓存丢失类型的同时,只会增加14%的性能开销和19%的内存开销(对于占用空间较大的应用程序)。CachePerf检测到9个以前未知的错误。修复报告的bug可以实现从3%到3788%的性能加速。由于其有效性和低开销,CachePerf将成为现有分析器不可或缺的补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信