Modifikasi metode iterasi berorde tiga dengan orde konvergensi optimal

Annisa Agustina, W. Wartono
{"title":"Modifikasi metode iterasi berorde tiga dengan orde konvergensi optimal","authors":"Annisa Agustina, W. Wartono","doi":"10.19184/mims.v23i1.33940","DOIUrl":null,"url":null,"abstract":"Weerakoon-Fernando’s and Homeier’s methods are a third-order iterative method to solve nonlinear equations. A new third-order iterative method is constructed  by sum of Weerakoon-Fernandon’s and Homeier’s method. This paper discusses  the modification of the third-order iterative method using contra harmonic mean with  involving one real parameter q. The aim of this modification is  to improve the convergence order of the method and keep the number of function evaluations. Based on the result of study shows that the method has a third-order of convergence for  and a fourth-order of convergence for  with three evaluation of functions. Furthermore, numerical simulation is given to exam  the perfomance of the methods. The measurement  of performance of the methods, such as : number of iterations, number of function evaluations, numerical convergence  order, and value of function, are compared with Newton’s, Weerakoon-Fernando’s, and Homeier’s methods. Generally, the result of  numerical simulation shows that the new method for  has better  performance than others. \nKeywords: Weerakoon-Fernando’s method, Homeier’smethod, order of convergence, contra harmonic mean, evaluation of functionMSC2020: 41A25, 41A58, 65H05","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"81 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v23i1.33940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Weerakoon-Fernando’s and Homeier’s methods are a third-order iterative method to solve nonlinear equations. A new third-order iterative method is constructed  by sum of Weerakoon-Fernandon’s and Homeier’s method. This paper discusses  the modification of the third-order iterative method using contra harmonic mean with  involving one real parameter q. The aim of this modification is  to improve the convergence order of the method and keep the number of function evaluations. Based on the result of study shows that the method has a third-order of convergence for  and a fourth-order of convergence for  with three evaluation of functions. Furthermore, numerical simulation is given to exam  the perfomance of the methods. The measurement  of performance of the methods, such as : number of iterations, number of function evaluations, numerical convergence  order, and value of function, are compared with Newton’s, Weerakoon-Fernando’s, and Homeier’s methods. Generally, the result of  numerical simulation shows that the new method for  has better  performance than others. Keywords: Weerakoon-Fernando’s method, Homeier’smethod, order of convergence, contra harmonic mean, evaluation of functionMSC2020: 41A25, 41A58, 65H05
三阶重复法与最优收敛顺序
Weerakoon-Fernando方法和Homeier方法是求解非线性方程的三阶迭代方法。将Weerakoon-Fernandon方法与Homeier方法相加,构造了一种新的三阶迭代方法。本文讨论了用含一个实参q的反调和平均值对三阶迭代法的修正,其目的是提高方法的收敛阶并保持函数求值的次数。研究结果表明,该方法具有三阶收敛性和四阶收敛性。最后通过数值仿真验证了该方法的性能。在迭代次数、函数求值次数、数值收敛阶数、函数值等性能度量方面,与Newton方法、Weerakoon-Fernando方法和homier方法进行了比较。数值模拟结果表明,该方法具有较好的性能。关键词:Weerakoon-Fernando方法,homier方法,收敛阶,反调和均值,函数评价[msc2020: 41A25, 41A58, 65H05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信