Wave Height and Peak Wave Period Prediction Using Recurrent Neural Networks

Kazuki Osawa, Hiroki Yamaguchi, Muhammad Umair, M. Hashmani, K. Horio
{"title":"Wave Height and Peak Wave Period Prediction Using Recurrent Neural Networks","authors":"Kazuki Osawa, Hiroki Yamaguchi, Muhammad Umair, M. Hashmani, K. Horio","doi":"10.1109/ICCI51257.2020.9247805","DOIUrl":null,"url":null,"abstract":"In this paper, we applied a recurrent neural network to predict a wave height and a peak wave period for next 24 hours from only those last 24 hours. We adopted LSTM as the network structure and used statistic gradient decent method and adaptive moment estimation method as the learning methods. It was difficult to estimate short-time fluctuations because only the wave height and period data were used as inputs, but it was shown that the wave height and peak wave period within the next 2 hours can be predicted with an accuracy within 20 percent in error.","PeriodicalId":194158,"journal":{"name":"2020 International Conference on Computational Intelligence (ICCI)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI51257.2020.9247805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we applied a recurrent neural network to predict a wave height and a peak wave period for next 24 hours from only those last 24 hours. We adopted LSTM as the network structure and used statistic gradient decent method and adaptive moment estimation method as the learning methods. It was difficult to estimate short-time fluctuations because only the wave height and period data were used as inputs, but it was shown that the wave height and peak wave period within the next 2 hours can be predicted with an accuracy within 20 percent in error.
用递归神经网络预测波高和波峰周期
在本文中,我们应用递归神经网络仅从过去24小时预测未来24小时的波高和峰值波周期。我们采用LSTM作为网络结构,采用统计梯度体面法和自适应矩估计法作为学习方法。由于只使用波高和周期数据作为输入,因此难以估计短期波动,但结果表明,可以预测未来2小时内的波高和峰值波周期,误差在20%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信